Properties

Label 2-648-1.1-c3-0-2
Degree $2$
Conductor $648$
Sign $1$
Analytic cond. $38.2332$
Root an. cond. $6.18330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.31·5-s − 29.5·7-s − 49.1·11-s + 18.2·13-s + 63.7·17-s − 52.0·19-s − 149.·23-s − 85.0·25-s + 119.·29-s + 303.·31-s + 186.·35-s + 170.·37-s + 43.6·41-s + 446.·43-s − 221.·47-s + 531.·49-s − 67.3·53-s + 310.·55-s − 467.·59-s − 475.·61-s − 115.·65-s − 240.·67-s + 550.·71-s + 552.·73-s + 1.45e3·77-s + 913.·79-s + 667.·83-s + ⋯
L(s)  = 1  − 0.565·5-s − 1.59·7-s − 1.34·11-s + 0.389·13-s + 0.910·17-s − 0.628·19-s − 1.35·23-s − 0.680·25-s + 0.764·29-s + 1.75·31-s + 0.902·35-s + 0.758·37-s + 0.166·41-s + 1.58·43-s − 0.688·47-s + 1.55·49-s − 0.174·53-s + 0.761·55-s − 1.03·59-s − 0.997·61-s − 0.220·65-s − 0.439·67-s + 0.920·71-s + 0.886·73-s + 2.15·77-s + 1.30·79-s + 0.883·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(648\)    =    \(2^{3} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(38.2332\)
Root analytic conductor: \(6.18330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 648,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8791300732\)
\(L(\frac12)\) \(\approx\) \(0.8791300732\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 6.31T + 125T^{2} \)
7 \( 1 + 29.5T + 343T^{2} \)
11 \( 1 + 49.1T + 1.33e3T^{2} \)
13 \( 1 - 18.2T + 2.19e3T^{2} \)
17 \( 1 - 63.7T + 4.91e3T^{2} \)
19 \( 1 + 52.0T + 6.85e3T^{2} \)
23 \( 1 + 149.T + 1.21e4T^{2} \)
29 \( 1 - 119.T + 2.43e4T^{2} \)
31 \( 1 - 303.T + 2.97e4T^{2} \)
37 \( 1 - 170.T + 5.06e4T^{2} \)
41 \( 1 - 43.6T + 6.89e4T^{2} \)
43 \( 1 - 446.T + 7.95e4T^{2} \)
47 \( 1 + 221.T + 1.03e5T^{2} \)
53 \( 1 + 67.3T + 1.48e5T^{2} \)
59 \( 1 + 467.T + 2.05e5T^{2} \)
61 \( 1 + 475.T + 2.26e5T^{2} \)
67 \( 1 + 240.T + 3.00e5T^{2} \)
71 \( 1 - 550.T + 3.57e5T^{2} \)
73 \( 1 - 552.T + 3.89e5T^{2} \)
79 \( 1 - 913.T + 4.93e5T^{2} \)
83 \( 1 - 667.T + 5.71e5T^{2} \)
89 \( 1 + 1.43e3T + 7.04e5T^{2} \)
97 \( 1 - 1.66e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11123157667536678240920610601, −9.497045570896632513926440609118, −8.191460622165367721999590395399, −7.71266853004580247342363324463, −6.42773176067873337498431430890, −5.85652775255036518551549572979, −4.46295890265209441011667371247, −3.42576309115324979793636165728, −2.53624199966187479874098782990, −0.52096456403876507026435177298, 0.52096456403876507026435177298, 2.53624199966187479874098782990, 3.42576309115324979793636165728, 4.46295890265209441011667371247, 5.85652775255036518551549572979, 6.42773176067873337498431430890, 7.71266853004580247342363324463, 8.191460622165367721999590395399, 9.497045570896632513926440609118, 10.11123157667536678240920610601

Graph of the $Z$-function along the critical line