Properties

Label 2-648-1.1-c3-0-7
Degree $2$
Conductor $648$
Sign $1$
Analytic cond. $38.2332$
Root an. cond. $6.18330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.31·5-s − 29.5·7-s + 49.1·11-s + 18.2·13-s − 63.7·17-s − 52.0·19-s + 149.·23-s − 85.0·25-s − 119.·29-s + 303.·31-s − 186.·35-s + 170.·37-s − 43.6·41-s + 446.·43-s + 221.·47-s + 531.·49-s + 67.3·53-s + 310.·55-s + 467.·59-s − 475.·61-s + 115.·65-s − 240.·67-s − 550.·71-s + 552.·73-s − 1.45e3·77-s + 913.·79-s − 667.·83-s + ⋯
L(s)  = 1  + 0.565·5-s − 1.59·7-s + 1.34·11-s + 0.389·13-s − 0.910·17-s − 0.628·19-s + 1.35·23-s − 0.680·25-s − 0.764·29-s + 1.75·31-s − 0.902·35-s + 0.758·37-s − 0.166·41-s + 1.58·43-s + 0.688·47-s + 1.55·49-s + 0.174·53-s + 0.761·55-s + 1.03·59-s − 0.997·61-s + 0.220·65-s − 0.439·67-s − 0.920·71-s + 0.886·73-s − 2.15·77-s + 1.30·79-s − 0.883·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(648\)    =    \(2^{3} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(38.2332\)
Root analytic conductor: \(6.18330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 648,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(1.888334654\)
\(L(\frac12)\) \(\approx\) \(1.888334654\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 6.31T + 125T^{2} \)
7 \( 1 + 29.5T + 343T^{2} \)
11 \( 1 - 49.1T + 1.33e3T^{2} \)
13 \( 1 - 18.2T + 2.19e3T^{2} \)
17 \( 1 + 63.7T + 4.91e3T^{2} \)
19 \( 1 + 52.0T + 6.85e3T^{2} \)
23 \( 1 - 149.T + 1.21e4T^{2} \)
29 \( 1 + 119.T + 2.43e4T^{2} \)
31 \( 1 - 303.T + 2.97e4T^{2} \)
37 \( 1 - 170.T + 5.06e4T^{2} \)
41 \( 1 + 43.6T + 6.89e4T^{2} \)
43 \( 1 - 446.T + 7.95e4T^{2} \)
47 \( 1 - 221.T + 1.03e5T^{2} \)
53 \( 1 - 67.3T + 1.48e5T^{2} \)
59 \( 1 - 467.T + 2.05e5T^{2} \)
61 \( 1 + 475.T + 2.26e5T^{2} \)
67 \( 1 + 240.T + 3.00e5T^{2} \)
71 \( 1 + 550.T + 3.57e5T^{2} \)
73 \( 1 - 552.T + 3.89e5T^{2} \)
79 \( 1 - 913.T + 4.93e5T^{2} \)
83 \( 1 + 667.T + 5.71e5T^{2} \)
89 \( 1 - 1.43e3T + 7.04e5T^{2} \)
97 \( 1 - 1.66e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00042439817061037683398437820, −9.252494916014545904017562998698, −8.804305126348422211541831978569, −7.27185969599602486383147260949, −6.35806543162409382689893686087, −6.05624632506419231947587701052, −4.44912437290931287329311567645, −3.49518654413670596889366316628, −2.34421694315093989926314800867, −0.807243550049729041496155745530, 0.807243550049729041496155745530, 2.34421694315093989926314800867, 3.49518654413670596889366316628, 4.44912437290931287329311567645, 6.05624632506419231947587701052, 6.35806543162409382689893686087, 7.27185969599602486383147260949, 8.804305126348422211541831978569, 9.252494916014545904017562998698, 10.00042439817061037683398437820

Graph of the $Z$-function along the critical line