Properties

Label 2-648-1.1-c3-0-24
Degree $2$
Conductor $648$
Sign $-1$
Analytic cond. $38.2332$
Root an. cond. $6.18330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.69·5-s − 17.1·7-s + 4.00·11-s + 41.0·13-s − 3.32·17-s + 108.·19-s + 142.·23-s − 122.·25-s − 295.·29-s − 239.·31-s + 29.0·35-s − 121.·37-s + 344.·41-s − 420.·43-s + 92.7·47-s − 49.1·49-s − 191.·53-s − 6.77·55-s − 661.·59-s − 359.·61-s − 69.4·65-s − 273.·67-s + 344.·71-s − 824.·73-s − 68.6·77-s + 289.·79-s + 1.32e3·83-s + ⋯
L(s)  = 1  − 0.151·5-s − 0.925·7-s + 0.109·11-s + 0.875·13-s − 0.0474·17-s + 1.31·19-s + 1.29·23-s − 0.977·25-s − 1.89·29-s − 1.38·31-s + 0.140·35-s − 0.540·37-s + 1.31·41-s − 1.49·43-s + 0.287·47-s − 0.143·49-s − 0.495·53-s − 0.0166·55-s − 1.46·59-s − 0.754·61-s − 0.132·65-s − 0.499·67-s + 0.575·71-s − 1.32·73-s − 0.101·77-s + 0.411·79-s + 1.74·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(648\)    =    \(2^{3} \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(38.2332\)
Root analytic conductor: \(6.18330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 648,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 1.69T + 125T^{2} \)
7 \( 1 + 17.1T + 343T^{2} \)
11 \( 1 - 4.00T + 1.33e3T^{2} \)
13 \( 1 - 41.0T + 2.19e3T^{2} \)
17 \( 1 + 3.32T + 4.91e3T^{2} \)
19 \( 1 - 108.T + 6.85e3T^{2} \)
23 \( 1 - 142.T + 1.21e4T^{2} \)
29 \( 1 + 295.T + 2.43e4T^{2} \)
31 \( 1 + 239.T + 2.97e4T^{2} \)
37 \( 1 + 121.T + 5.06e4T^{2} \)
41 \( 1 - 344.T + 6.89e4T^{2} \)
43 \( 1 + 420.T + 7.95e4T^{2} \)
47 \( 1 - 92.7T + 1.03e5T^{2} \)
53 \( 1 + 191.T + 1.48e5T^{2} \)
59 \( 1 + 661.T + 2.05e5T^{2} \)
61 \( 1 + 359.T + 2.26e5T^{2} \)
67 \( 1 + 273.T + 3.00e5T^{2} \)
71 \( 1 - 344.T + 3.57e5T^{2} \)
73 \( 1 + 824.T + 3.89e5T^{2} \)
79 \( 1 - 289.T + 4.93e5T^{2} \)
83 \( 1 - 1.32e3T + 5.71e5T^{2} \)
89 \( 1 + 328.T + 7.04e5T^{2} \)
97 \( 1 - 767.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.405972727964585237231825344262, −9.218722640031364482414503294018, −7.84678357779523972267364813537, −7.10080978797935277254534299192, −6.08644449127345988066175931336, −5.25939492838950541430284822445, −3.81359204338220403816588593512, −3.14222434354455286557490419559, −1.51904171903100773035616475147, 0, 1.51904171903100773035616475147, 3.14222434354455286557490419559, 3.81359204338220403816588593512, 5.25939492838950541430284822445, 6.08644449127345988066175931336, 7.10080978797935277254534299192, 7.84678357779523972267364813537, 9.218722640031364482414503294018, 9.405972727964585237231825344262

Graph of the $Z$-function along the critical line