Properties

Label 2-648-1.1-c3-0-13
Degree $2$
Conductor $648$
Sign $1$
Analytic cond. $38.2332$
Root an. cond. $6.18330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 18.1·5-s − 0.822·7-s − 65.5·11-s + 31.8·13-s + 124.·17-s + 27.8·19-s − 43.1·23-s + 205.·25-s + 39.8·29-s + 294.·31-s − 14.9·35-s − 104.·37-s + 307.·41-s − 361.·43-s + 397.·47-s − 342.·49-s + 107.·53-s − 1.19e3·55-s + 188.·59-s − 99.0·61-s + 578.·65-s + 425.·67-s − 445.·71-s − 499.·73-s + 53.9·77-s + 570.·79-s + 1.30e3·83-s + ⋯
L(s)  = 1  + 1.62·5-s − 0.0444·7-s − 1.79·11-s + 0.678·13-s + 1.77·17-s + 0.336·19-s − 0.391·23-s + 1.64·25-s + 0.254·29-s + 1.70·31-s − 0.0722·35-s − 0.462·37-s + 1.17·41-s − 1.28·43-s + 1.23·47-s − 0.998·49-s + 0.277·53-s − 2.92·55-s + 0.416·59-s − 0.207·61-s + 1.10·65-s + 0.775·67-s − 0.744·71-s − 0.801·73-s + 0.0797·77-s + 0.812·79-s + 1.73·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(648\)    =    \(2^{3} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(38.2332\)
Root analytic conductor: \(6.18330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 648,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.759846921\)
\(L(\frac12)\) \(\approx\) \(2.759846921\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 - 18.1T + 125T^{2} \)
7 \( 1 + 0.822T + 343T^{2} \)
11 \( 1 + 65.5T + 1.33e3T^{2} \)
13 \( 1 - 31.8T + 2.19e3T^{2} \)
17 \( 1 - 124.T + 4.91e3T^{2} \)
19 \( 1 - 27.8T + 6.85e3T^{2} \)
23 \( 1 + 43.1T + 1.21e4T^{2} \)
29 \( 1 - 39.8T + 2.43e4T^{2} \)
31 \( 1 - 294.T + 2.97e4T^{2} \)
37 \( 1 + 104.T + 5.06e4T^{2} \)
41 \( 1 - 307.T + 6.89e4T^{2} \)
43 \( 1 + 361.T + 7.95e4T^{2} \)
47 \( 1 - 397.T + 1.03e5T^{2} \)
53 \( 1 - 107.T + 1.48e5T^{2} \)
59 \( 1 - 188.T + 2.05e5T^{2} \)
61 \( 1 + 99.0T + 2.26e5T^{2} \)
67 \( 1 - 425.T + 3.00e5T^{2} \)
71 \( 1 + 445.T + 3.57e5T^{2} \)
73 \( 1 + 499.T + 3.89e5T^{2} \)
79 \( 1 - 570.T + 4.93e5T^{2} \)
83 \( 1 - 1.30e3T + 5.71e5T^{2} \)
89 \( 1 - 1.32e3T + 7.04e5T^{2} \)
97 \( 1 - 944.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.19664236217597114654959457423, −9.538503742657354749242245282953, −8.380322030442082804821663659452, −7.62761880394120755188408956815, −6.32012786656726595919978322754, −5.62965643826621142352220091362, −4.96063606658122677943803049197, −3.21727699074220159934240217241, −2.30064946173452394325257242570, −1.02290660367226557313468749690, 1.02290660367226557313468749690, 2.30064946173452394325257242570, 3.21727699074220159934240217241, 4.96063606658122677943803049197, 5.62965643826621142352220091362, 6.32012786656726595919978322754, 7.62761880394120755188408956815, 8.380322030442082804821663659452, 9.538503742657354749242245282953, 10.19664236217597114654959457423

Graph of the $Z$-function along the critical line