Properties

Label 4-648e2-1.1-c3e2-0-8
Degree $4$
Conductor $419904$
Sign $1$
Analytic cond. $1461.78$
Root an. cond. $6.18330$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·5-s − 30·7-s − 46·11-s + 92·13-s + 22·17-s − 86·19-s − 58·23-s − 25-s + 108·29-s + 136·31-s − 240·35-s − 180·37-s + 672·41-s − 70·43-s + 852·47-s + 190·49-s + 668·53-s − 368·55-s + 548·59-s + 284·61-s + 736·65-s + 1.16e3·67-s − 806·71-s − 1.51e3·73-s + 1.38e3·77-s − 22·79-s + 1.54e3·83-s + ⋯
L(s)  = 1  + 0.715·5-s − 1.61·7-s − 1.26·11-s + 1.96·13-s + 0.313·17-s − 1.03·19-s − 0.525·23-s − 0.00799·25-s + 0.691·29-s + 0.787·31-s − 1.15·35-s − 0.799·37-s + 2.55·41-s − 0.248·43-s + 2.64·47-s + 0.553·49-s + 1.73·53-s − 0.902·55-s + 1.20·59-s + 0.596·61-s + 1.40·65-s + 2.11·67-s − 1.34·71-s − 2.42·73-s + 2.04·77-s − 0.0313·79-s + 2.03·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 419904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 419904 ^{s/2} \, \Gamma_{\C}(s+3/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(419904\)    =    \(2^{6} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1461.78\)
Root analytic conductor: \(6.18330\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 419904,\ (\ :3/2, 3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.627546492\)
\(L(\frac12)\) \(\approx\) \(2.627546492\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$D_{4}$ \( 1 - 8 T + 13 p T^{2} - 8 p^{3} T^{3} + p^{6} T^{4} \)
7$D_{4}$ \( 1 + 30 T + 710 T^{2} + 30 p^{3} T^{3} + p^{6} T^{4} \)
11$D_{4}$ \( 1 + 46 T + 1382 T^{2} + 46 p^{3} T^{3} + p^{6} T^{4} \)
13$D_{4}$ \( 1 - 92 T + 6309 T^{2} - 92 p^{3} T^{3} + p^{6} T^{4} \)
17$D_{4}$ \( 1 - 22 T - 2917 T^{2} - 22 p^{3} T^{3} + p^{6} T^{4} \)
19$D_{4}$ \( 1 + 86 T + 10542 T^{2} + 86 p^{3} T^{3} + p^{6} T^{4} \)
23$D_{4}$ \( 1 + 58 T + 24974 T^{2} + 58 p^{3} T^{3} + p^{6} T^{4} \)
29$D_{4}$ \( 1 - 108 T + 51493 T^{2} - 108 p^{3} T^{3} + p^{6} T^{4} \)
31$D_{4}$ \( 1 - 136 T + 12750 T^{2} - 136 p^{3} T^{3} + p^{6} T^{4} \)
37$D_{4}$ \( 1 + 180 T + 109205 T^{2} + 180 p^{3} T^{3} + p^{6} T^{4} \)
41$D_{4}$ \( 1 - 672 T + 249934 T^{2} - 672 p^{3} T^{3} + p^{6} T^{4} \)
43$D_{4}$ \( 1 + 70 T + 53910 T^{2} + 70 p^{3} T^{3} + p^{6} T^{4} \)
47$D_{4}$ \( 1 - 852 T + 388318 T^{2} - 852 p^{3} T^{3} + p^{6} T^{4} \)
53$D_{4}$ \( 1 - 668 T + 357854 T^{2} - 668 p^{3} T^{3} + p^{6} T^{4} \)
59$D_{4}$ \( 1 - 548 T + 478598 T^{2} - 548 p^{3} T^{3} + p^{6} T^{4} \)
61$D_{4}$ \( 1 - 284 T + 416037 T^{2} - 284 p^{3} T^{3} + p^{6} T^{4} \)
67$D_{4}$ \( 1 - 1162 T + 914766 T^{2} - 1162 p^{3} T^{3} + p^{6} T^{4} \)
71$D_{4}$ \( 1 + 806 T + 876422 T^{2} + 806 p^{3} T^{3} + p^{6} T^{4} \)
73$D_{4}$ \( 1 + 1510 T + 1282935 T^{2} + 1510 p^{3} T^{3} + p^{6} T^{4} \)
79$D_{4}$ \( 1 + 22 T + 648318 T^{2} + 22 p^{3} T^{3} + p^{6} T^{4} \)
83$D_{4}$ \( 1 - 1540 T + 1446230 T^{2} - 1540 p^{3} T^{3} + p^{6} T^{4} \)
89$C_2$ \( ( 1 - 1323 T + p^{3} T^{2} )^{2} \)
97$D_{4}$ \( 1 - 472 T + 1378542 T^{2} - 472 p^{3} T^{3} + p^{6} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.26379611094222068489067293786, −10.19664236217597114654959457423, −9.538503742657354749242245282953, −8.983884790159777698015763414293, −8.739660334425426297164545648020, −8.380322030442082804821663659452, −7.62761880394120755188408956815, −7.38269044267722665315386207160, −6.54207290879840635475484073538, −6.32012786656726595919978322754, −5.93236203507000353622496411420, −5.62965643826621142352220091362, −4.96063606658122677943803049197, −4.10859532809610481243440168106, −3.80900109531899193072572742075, −3.21727699074220159934240217241, −2.41103859534800266919602528206, −2.30064946173452394325257242570, −1.02290660367226557313468749690, −0.54917508797246567512874928675, 0.54917508797246567512874928675, 1.02290660367226557313468749690, 2.30064946173452394325257242570, 2.41103859534800266919602528206, 3.21727699074220159934240217241, 3.80900109531899193072572742075, 4.10859532809610481243440168106, 4.96063606658122677943803049197, 5.62965643826621142352220091362, 5.93236203507000353622496411420, 6.32012786656726595919978322754, 6.54207290879840635475484073538, 7.38269044267722665315386207160, 7.62761880394120755188408956815, 8.380322030442082804821663659452, 8.739660334425426297164545648020, 8.983884790159777698015763414293, 9.538503742657354749242245282953, 10.19664236217597114654959457423, 10.26379611094222068489067293786

Graph of the $Z$-function along the critical line