Properties

Label 2-648-1.1-c3-0-1
Degree $2$
Conductor $648$
Sign $1$
Analytic cond. $38.2332$
Root an. cond. $6.18330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 13.3·5-s − 14.3·7-s − 39.0·11-s − 76.7·13-s + 62.4·17-s − 39.7·19-s + 128.·23-s + 53.4·25-s − 64.9·29-s − 9.13·31-s + 191.·35-s + 319.·37-s − 17.5·41-s − 450.·43-s + 581.·47-s − 136.·49-s − 329.·53-s + 521.·55-s + 241.·59-s + 497.·61-s + 1.02e3·65-s − 578.·67-s + 660.·71-s + 696.·73-s + 561.·77-s + 730.·79-s − 1.09e3·83-s + ⋯
L(s)  = 1  − 1.19·5-s − 0.775·7-s − 1.07·11-s − 1.63·13-s + 0.890·17-s − 0.480·19-s + 1.16·23-s + 0.427·25-s − 0.415·29-s − 0.0529·31-s + 0.926·35-s + 1.41·37-s − 0.0669·41-s − 1.59·43-s + 1.80·47-s − 0.398·49-s − 0.853·53-s + 1.27·55-s + 0.533·59-s + 1.04·61-s + 1.95·65-s − 1.05·67-s + 1.10·71-s + 1.11·73-s + 0.830·77-s + 1.04·79-s − 1.44·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(648\)    =    \(2^{3} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(38.2332\)
Root analytic conductor: \(6.18330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 648,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6917003632\)
\(L(\frac12)\) \(\approx\) \(0.6917003632\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 13.3T + 125T^{2} \)
7 \( 1 + 14.3T + 343T^{2} \)
11 \( 1 + 39.0T + 1.33e3T^{2} \)
13 \( 1 + 76.7T + 2.19e3T^{2} \)
17 \( 1 - 62.4T + 4.91e3T^{2} \)
19 \( 1 + 39.7T + 6.85e3T^{2} \)
23 \( 1 - 128.T + 1.21e4T^{2} \)
29 \( 1 + 64.9T + 2.43e4T^{2} \)
31 \( 1 + 9.13T + 2.97e4T^{2} \)
37 \( 1 - 319.T + 5.06e4T^{2} \)
41 \( 1 + 17.5T + 6.89e4T^{2} \)
43 \( 1 + 450.T + 7.95e4T^{2} \)
47 \( 1 - 581.T + 1.03e5T^{2} \)
53 \( 1 + 329.T + 1.48e5T^{2} \)
59 \( 1 - 241.T + 2.05e5T^{2} \)
61 \( 1 - 497.T + 2.26e5T^{2} \)
67 \( 1 + 578.T + 3.00e5T^{2} \)
71 \( 1 - 660.T + 3.57e5T^{2} \)
73 \( 1 - 696.T + 3.89e5T^{2} \)
79 \( 1 - 730.T + 4.93e5T^{2} \)
83 \( 1 + 1.09e3T + 5.71e5T^{2} \)
89 \( 1 - 317.T + 7.04e5T^{2} \)
97 \( 1 + 1.48e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.10585086758921902634789969745, −9.423843825554303391239419627189, −8.186894253465171377983724191783, −7.56489381179280124197191050010, −6.83636926862325613350988902889, −5.47545409204803167242142440258, −4.59962823428255167376683663893, −3.42861746588633620920088477732, −2.53715670232856502780370050809, −0.45970055972636682611624224276, 0.45970055972636682611624224276, 2.53715670232856502780370050809, 3.42861746588633620920088477732, 4.59962823428255167376683663893, 5.47545409204803167242142440258, 6.83636926862325613350988902889, 7.56489381179280124197191050010, 8.186894253465171377983724191783, 9.423843825554303391239419627189, 10.10585086758921902634789969745

Graph of the $Z$-function along the critical line