| L(s) = 1 | + (−1.15 − 0.820i)2-s + (0.652 + 1.89i)4-s + (−2.15 − 2.57i)5-s + (−1.78 + 0.649i)7-s + (0.799 − 2.71i)8-s + (0.374 + 4.73i)10-s + (−3.21 + 3.83i)11-s + (3.61 − 0.637i)13-s + (2.58 + 0.716i)14-s + (−3.14 + 2.46i)16-s + (1.74 + 3.02i)17-s + (−2.73 − 1.57i)19-s + (3.45 − 5.76i)20-s + (6.85 − 1.77i)22-s + (2.93 + 1.06i)23-s + ⋯ |
| L(s) = 1 | + (−0.814 − 0.580i)2-s + (0.326 + 0.945i)4-s + (−0.965 − 1.15i)5-s + (−0.674 + 0.245i)7-s + (0.282 − 0.959i)8-s + (0.118 + 1.49i)10-s + (−0.970 + 1.15i)11-s + (1.00 − 0.176i)13-s + (0.691 + 0.191i)14-s + (−0.786 + 0.617i)16-s + (0.422 + 0.732i)17-s + (−0.626 − 0.361i)19-s + (0.772 − 1.28i)20-s + (1.46 − 0.378i)22-s + (0.611 + 0.222i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.885 - 0.465i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.885 - 0.465i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.540989 + 0.133473i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.540989 + 0.133473i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.15 + 0.820i)T \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (2.15 + 2.57i)T + (-0.868 + 4.92i)T^{2} \) |
| 7 | \( 1 + (1.78 - 0.649i)T + (5.36 - 4.49i)T^{2} \) |
| 11 | \( 1 + (3.21 - 3.83i)T + (-1.91 - 10.8i)T^{2} \) |
| 13 | \( 1 + (-3.61 + 0.637i)T + (12.2 - 4.44i)T^{2} \) |
| 17 | \( 1 + (-1.74 - 3.02i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.73 + 1.57i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.93 - 1.06i)T + (17.6 + 14.7i)T^{2} \) |
| 29 | \( 1 + (-6.61 - 1.16i)T + (27.2 + 9.91i)T^{2} \) |
| 31 | \( 1 + (-0.842 - 0.306i)T + (23.7 + 19.9i)T^{2} \) |
| 37 | \( 1 + (-6.21 + 3.58i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.341 - 1.93i)T + (-38.5 + 14.0i)T^{2} \) |
| 43 | \( 1 + (5.36 - 6.39i)T + (-7.46 - 42.3i)T^{2} \) |
| 47 | \( 1 + (2.63 - 0.959i)T + (36.0 - 30.2i)T^{2} \) |
| 53 | \( 1 - 9.52iT - 53T^{2} \) |
| 59 | \( 1 + (-6.13 - 7.31i)T + (-10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (-2.92 - 8.03i)T + (-46.7 + 39.2i)T^{2} \) |
| 67 | \( 1 + (-13.7 + 2.42i)T + (62.9 - 22.9i)T^{2} \) |
| 71 | \( 1 + (1.50 + 2.59i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.472 + 0.818i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (0.803 - 4.55i)T + (-74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (2.12 + 0.375i)T + (77.9 + 28.3i)T^{2} \) |
| 89 | \( 1 + (-7.83 + 13.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.68 - 1.41i)T + (16.8 + 95.5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54376668358847407375764433309, −9.743119039187481634872722590877, −8.818860681185247783310996575487, −8.220331002115608985703849353421, −7.49011896086808298418981665809, −6.32067458180897972863371856124, −4.83428790358786875568611338016, −3.94805523798003974704260202237, −2.74579253094685749991623727674, −1.12522079389807038221413626653,
0.47115360144674441090256775920, 2.74334920218141633996696272598, 3.65614627756699488639856983432, 5.26593778036797746194138739939, 6.48358145811990741147600995358, 6.82491714778207266784735644430, 8.096930372933873586135013926401, 8.335401663262138933135439663187, 9.713827079298190042205466483196, 10.49827626562350420903863494368