| L(s) = 1 | + (−1.02 + 0.977i)2-s + (0.0884 − 1.99i)4-s + (0.252 + 0.437i)5-s + (−2.96 − 1.71i)7-s + (1.86 + 2.12i)8-s + (−0.686 − 0.200i)10-s + (2.87 + 1.65i)11-s + (−2.20 + 1.27i)13-s + (4.70 − 1.15i)14-s + (−3.98 − 0.353i)16-s − 5.04i·17-s + 4.74·19-s + (0.896 − 0.466i)20-s + (−4.55 + 1.11i)22-s + (3.22 + 5.57i)23-s + ⋯ |
| L(s) = 1 | + (−0.722 + 0.691i)2-s + (0.0442 − 0.999i)4-s + (0.113 + 0.195i)5-s + (−1.12 − 0.647i)7-s + (0.658 + 0.752i)8-s + (−0.216 − 0.0633i)10-s + (0.866 + 0.500i)11-s + (−0.612 + 0.353i)13-s + (1.25 − 0.307i)14-s + (−0.996 − 0.0883i)16-s − 1.22i·17-s + 1.08·19-s + (0.200 − 0.104i)20-s + (−0.971 + 0.237i)22-s + (0.671 + 1.16i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0209i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0209i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.927379 + 0.00970101i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.927379 + 0.00970101i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.02 - 0.977i)T \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (-0.252 - 0.437i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (2.96 + 1.71i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.87 - 1.65i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.20 - 1.27i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 5.04iT - 17T^{2} \) |
| 19 | \( 1 - 4.74T + 19T^{2} \) |
| 23 | \( 1 + (-3.22 - 5.57i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.71 + 4.70i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-5.17 + 2.98i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 11.1iT - 37T^{2} \) |
| 41 | \( 1 + (-1.62 + 0.939i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 + 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.43 - 9.40i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 5.93T + 53T^{2} \) |
| 59 | \( 1 + (-5.74 + 3.31i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.41 - 2.55i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 - 3.46i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 4.41T + 71T^{2} \) |
| 73 | \( 1 - 7.74T + 73T^{2} \) |
| 79 | \( 1 + (3.72 + 2.15i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.12 + 1.80i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 17.0iT - 89T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.10876207720406471816161153450, −9.611079653504700853327160739177, −9.115509827141622780199180641760, −7.64879705180226714320797316141, −7.06879402028829247997623553358, −6.42818292544464814244550086212, −5.28049171237777617333251174239, −4.10978161312832610093126534490, −2.61165013591004305779275422079, −0.794071797595524469053396231255,
1.14774585330418597374804208792, 2.79683202900332938432981422723, 3.49910188092475256161855497310, 4.94527941482272882867376760858, 6.31033036979428978256092656131, 7.00103979580291069541974087659, 8.379110883820714790831818410523, 8.851269638699697804656444919508, 9.773073656174297504360635672135, 10.31801064165750075996267964904