Properties

Label 8-648e4-1.1-c1e4-0-9
Degree $8$
Conductor $176319369216$
Sign $1$
Analytic cond. $716.817$
Root an. cond. $2.27471$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·4-s + 8·19-s + 10·25-s + 20·43-s − 14·49-s − 8·64-s − 28·67-s + 8·73-s + 16·76-s + 20·97-s + 20·100-s − 14·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 26·169-s + 40·172-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  + 4-s + 1.83·19-s + 2·25-s + 3.04·43-s − 2·49-s − 64-s − 3.42·67-s + 0.936·73-s + 1.83·76-s + 2.03·97-s + 2·100-s − 1.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2·169-s + 3.04·172-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{16}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{16}\)
Sign: $1$
Analytic conductor: \(716.817\)
Root analytic conductor: \(2.27471\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{16} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.976191812\)
\(L(\frac12)\) \(\approx\) \(3.976191812\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2^2$ \( 1 - p T^{2} + p^{2} T^{4} \)
3 \( 1 \)
good5$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T + 25 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T + 25 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
13$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - p T^{2} )^{4} \)
41$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T - 5 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T - 5 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
43$C_2^2$ \( ( 1 - 10 T + 57 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + p T^{2} )^{4} \)
59$C_2^2$$\times$$C_2^2$ \( ( 1 - 6 T - 23 T^{2} - 6 p T^{3} + p^{2} T^{4} )( 1 + 6 T - 23 T^{2} + 6 p T^{3} + p^{2} T^{4} ) \)
61$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 + 14 T + 129 T^{2} + 14 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 - 2 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 18 T + 241 T^{2} - 18 p T^{3} + p^{2} T^{4} )( 1 + 18 T + 241 T^{2} + 18 p T^{3} + p^{2} T^{4} ) \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{2}( 1 + 18 T + p T^{2} )^{2} \)
97$C_2^2$ \( ( 1 - 10 T + 3 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.53021583784779964880884880040, −7.44547345673844390365579788830, −7.11666027261264462856554877039, −6.94610833045269602799251803276, −6.67421754769981061490747647340, −6.41393758956509253734278504980, −6.31847905302640599106477930363, −5.89701918867828366602938440360, −5.62950742355998522429812203905, −5.60893794420405578656809842938, −5.27082070028871773508167765680, −4.78967384552911708289730842874, −4.64679650058616018927627704801, −4.50783540317841986114746882219, −4.26228403567267934635315587836, −3.66233335730430501892377238223, −3.38007721658756800872919200214, −3.27485815069797705908059316950, −2.84349512476922018580285030845, −2.70939775202098723860756402694, −2.34556713359145431020197491604, −1.91944243790322267206906112850, −1.43649121692833088804410698127, −1.15949047844928478056530366707, −0.59878789389094428760888348338, 0.59878789389094428760888348338, 1.15949047844928478056530366707, 1.43649121692833088804410698127, 1.91944243790322267206906112850, 2.34556713359145431020197491604, 2.70939775202098723860756402694, 2.84349512476922018580285030845, 3.27485815069797705908059316950, 3.38007721658756800872919200214, 3.66233335730430501892377238223, 4.26228403567267934635315587836, 4.50783540317841986114746882219, 4.64679650058616018927627704801, 4.78967384552911708289730842874, 5.27082070028871773508167765680, 5.60893794420405578656809842938, 5.62950742355998522429812203905, 5.89701918867828366602938440360, 6.31847905302640599106477930363, 6.41393758956509253734278504980, 6.67421754769981061490747647340, 6.94610833045269602799251803276, 7.11666027261264462856554877039, 7.44547345673844390365579788830, 7.53021583784779964880884880040

Graph of the $Z$-function along the critical line