Properties

Label 2-648-648.155-c1-0-48
Degree $2$
Conductor $648$
Sign $0.136 - 0.990i$
Analytic cond. $5.17430$
Root an. cond. $2.27471$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.41 + 0.0421i)2-s + (1.42 + 0.982i)3-s + (1.99 + 0.119i)4-s + (−3.16 + 2.08i)5-s + (1.97 + 1.44i)6-s + (−1.35 − 1.27i)7-s + (2.81 + 0.252i)8-s + (1.06 + 2.80i)9-s + (−4.56 + 2.80i)10-s + (2.67 + 5.33i)11-s + (2.73 + 2.13i)12-s + (0.0628 − 0.0271i)13-s + (−1.86 − 1.86i)14-s + (−6.56 − 0.141i)15-s + (3.97 + 0.475i)16-s + (−2.02 − 2.41i)17-s + ⋯
L(s)  = 1  + (0.999 + 0.0297i)2-s + (0.823 + 0.567i)3-s + (0.998 + 0.0595i)4-s + (−1.41 + 0.931i)5-s + (0.806 + 0.591i)6-s + (−0.512 − 0.483i)7-s + (0.996 + 0.0892i)8-s + (0.356 + 0.934i)9-s + (−1.44 + 0.888i)10-s + (0.807 + 1.60i)11-s + (0.788 + 0.615i)12-s + (0.0174 − 0.00752i)13-s + (−0.497 − 0.498i)14-s + (−1.69 − 0.0364i)15-s + (0.992 + 0.118i)16-s + (−0.491 − 0.585i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.136 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 648 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.136 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(648\)    =    \(2^{3} \cdot 3^{4}\)
Sign: $0.136 - 0.990i$
Analytic conductor: \(5.17430\)
Root analytic conductor: \(2.27471\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{648} (155, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 648,\ (\ :1/2),\ 0.136 - 0.990i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.14644 + 1.87169i\)
\(L(\frac12)\) \(\approx\) \(2.14644 + 1.87169i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.41 - 0.0421i)T \)
3 \( 1 + (-1.42 - 0.982i)T \)
good5 \( 1 + (3.16 - 2.08i)T + (1.98 - 4.59i)T^{2} \)
7 \( 1 + (1.35 + 1.27i)T + (0.407 + 6.98i)T^{2} \)
11 \( 1 + (-2.67 - 5.33i)T + (-6.56 + 8.82i)T^{2} \)
13 \( 1 + (-0.0628 + 0.0271i)T + (8.92 - 9.45i)T^{2} \)
17 \( 1 + (2.02 + 2.41i)T + (-2.95 + 16.7i)T^{2} \)
19 \( 1 + (2.74 + 2.29i)T + (3.29 + 18.7i)T^{2} \)
23 \( 1 + (0.0746 + 0.0791i)T + (-1.33 + 22.9i)T^{2} \)
29 \( 1 + (-8.41 + 0.983i)T + (28.2 - 6.68i)T^{2} \)
31 \( 1 + (-0.371 - 1.56i)T + (-27.7 + 13.9i)T^{2} \)
37 \( 1 + (-5.21 + 0.919i)T + (34.7 - 12.6i)T^{2} \)
41 \( 1 + (4.52 + 3.37i)T + (11.7 + 39.2i)T^{2} \)
43 \( 1 + (-0.296 + 5.09i)T + (-42.7 - 4.99i)T^{2} \)
47 \( 1 + (-7.53 - 1.78i)T + (42.0 + 21.0i)T^{2} \)
53 \( 1 + (-2.60 - 4.50i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-4.25 + 8.47i)T + (-35.2 - 47.3i)T^{2} \)
61 \( 1 + (13.2 - 3.95i)T + (50.9 - 33.5i)T^{2} \)
67 \( 1 + (3.86 + 0.451i)T + (65.1 + 15.4i)T^{2} \)
71 \( 1 + (8.54 + 3.11i)T + (54.3 + 45.6i)T^{2} \)
73 \( 1 + (1.21 - 0.440i)T + (55.9 - 46.9i)T^{2} \)
79 \( 1 + (-6.57 + 4.89i)T + (22.6 - 75.6i)T^{2} \)
83 \( 1 + (-4.98 + 3.71i)T + (23.8 - 79.5i)T^{2} \)
89 \( 1 + (0.658 + 1.80i)T + (-68.1 + 57.2i)T^{2} \)
97 \( 1 + (-16.0 - 10.5i)T + (38.4 + 89.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.68450414966243589609562437737, −10.23015048287698750638304918126, −9.019204427006286735616163348423, −7.79050877127935137464936688089, −7.11375779642153032728111421048, −6.61997836625786661395535564888, −4.61524567867144847658415170113, −4.23854383456010764529679471929, −3.32787784173547971348277491225, −2.37237882394216044617046829189, 1.11858379048690874940402296172, 2.87091287801980981611668786558, 3.73595699825573460518845718714, 4.43658351357675329637906722062, 5.97511240443810858211617995447, 6.61846861673705313195353148230, 7.87771354089775538281845432303, 8.420817954228393770129885620667, 9.121098479367578702364666852999, 10.64452006352525665241536431322

Graph of the $Z$-function along the critical line