Properties

Label 4-80e4-1.1-c1e2-0-21
Degree $4$
Conductor $40960000$
Sign $1$
Analytic cond. $2611.64$
Root an. cond. $7.14872$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·7-s + 9-s − 6·17-s − 8·23-s + 8·31-s + 10·41-s − 16·47-s + 34·49-s − 8·63-s − 16·71-s + 14·73-s + 8·79-s − 8·81-s + 2·89-s − 4·97-s − 16·103-s − 30·113-s + 48·119-s − 15·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 6·153-s + 157-s + ⋯
L(s)  = 1  − 3.02·7-s + 1/3·9-s − 1.45·17-s − 1.66·23-s + 1.43·31-s + 1.56·41-s − 2.33·47-s + 34/7·49-s − 1.00·63-s − 1.89·71-s + 1.63·73-s + 0.900·79-s − 8/9·81-s + 0.211·89-s − 0.406·97-s − 1.57·103-s − 2.82·113-s + 4.40·119-s − 1.36·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 0.485·153-s + 0.0798·157-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(40960000\)    =    \(2^{16} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(2611.64\)
Root analytic conductor: \(7.14872\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 40960000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 15 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
19$C_2^2$ \( 1 + 31 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 - 38 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 6 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 90 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
67$C_2^2$ \( 1 + 71 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 103 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80066511339698868144867013998, −7.51327785746854395546202593783, −6.83470490320537926686206465359, −6.64524812620345641513724650200, −6.60574079033666831796661054267, −6.24992205017648395450833929133, −5.72544329304210989125572679481, −5.68462424216386743750398770678, −4.90559165246597932010046809390, −4.39857743985684237770994546865, −4.20957376125427192556908452528, −3.82442928585005421839859896951, −3.20576986097163585444709038369, −3.18381671333882572040613513724, −2.48801286959059943482269220320, −2.35344242108488063020296406629, −1.61132926727736960221333292394, −0.846486907140068184631275542643, 0, 0, 0.846486907140068184631275542643, 1.61132926727736960221333292394, 2.35344242108488063020296406629, 2.48801286959059943482269220320, 3.18381671333882572040613513724, 3.20576986097163585444709038369, 3.82442928585005421839859896951, 4.20957376125427192556908452528, 4.39857743985684237770994546865, 4.90559165246597932010046809390, 5.68462424216386743750398770678, 5.72544329304210989125572679481, 6.24992205017648395450833929133, 6.60574079033666831796661054267, 6.64524812620345641513724650200, 6.83470490320537926686206465359, 7.51327785746854395546202593783, 7.80066511339698868144867013998

Graph of the $Z$-function along the critical line