Properties

Label 4-80e4-1.1-c1e2-0-26
Degree $4$
Conductor $40960000$
Sign $1$
Analytic cond. $2611.64$
Root an. cond. $7.14872$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 3·9-s + 6·11-s − 6·17-s − 2·19-s + 14·27-s − 12·33-s + 18·41-s − 8·43-s − 2·49-s + 12·51-s + 4·57-s − 24·59-s − 22·67-s + 14·73-s − 4·81-s − 30·83-s + 6·89-s − 28·97-s − 18·99-s − 18·107-s + 30·113-s + 5·121-s − 36·123-s + 127-s + 16·129-s + 131-s + ⋯
L(s)  = 1  − 1.15·3-s − 9-s + 1.80·11-s − 1.45·17-s − 0.458·19-s + 2.69·27-s − 2.08·33-s + 2.81·41-s − 1.21·43-s − 2/7·49-s + 1.68·51-s + 0.529·57-s − 3.12·59-s − 2.68·67-s + 1.63·73-s − 4/9·81-s − 3.29·83-s + 0.635·89-s − 2.84·97-s − 1.80·99-s − 1.74·107-s + 2.82·113-s + 5/11·121-s − 3.24·123-s + 0.0887·127-s + 1.40·129-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40960000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(40960000\)    =    \(2^{16} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(2611.64\)
Root analytic conductor: \(7.14872\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 40960000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 + 3 T + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
31$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
37$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
53$C_2$ \( ( 1 + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 110 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 11 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
83$C_2$ \( ( 1 + 15 T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.70335810156829705863391904265, −7.54264307730095337048471741758, −6.89196383428079211455618868444, −6.72442417220664239107111257784, −6.26549578694454350546618644962, −6.18547764499815853950078549552, −5.82447263033605320289712028178, −5.52931567541923221027731900029, −4.91517786982457014928812181189, −4.62676846698900744107986239736, −4.25515486851587908396506549994, −4.05831087742214772749981375137, −3.37140572117864993375075955325, −2.90456731103804175914770569122, −2.66373979462212274946552250522, −2.00416229582808273777504770876, −1.41508994746583727573027361004, −1.02528344775625259459207254184, 0, 0, 1.02528344775625259459207254184, 1.41508994746583727573027361004, 2.00416229582808273777504770876, 2.66373979462212274946552250522, 2.90456731103804175914770569122, 3.37140572117864993375075955325, 4.05831087742214772749981375137, 4.25515486851587908396506549994, 4.62676846698900744107986239736, 4.91517786982457014928812181189, 5.52931567541923221027731900029, 5.82447263033605320289712028178, 6.18547764499815853950078549552, 6.26549578694454350546618644962, 6.72442417220664239107111257784, 6.89196383428079211455618868444, 7.54264307730095337048471741758, 7.70335810156829705863391904265

Graph of the $Z$-function along the critical line