Properties

Label 8-640e4-1.1-c1e4-0-5
Degree $8$
Conductor $167772160000$
Sign $1$
Analytic cond. $682.069$
Root an. cond. $2.26062$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·9-s + 10·25-s − 8·41-s + 12·49-s + 90·81-s + 56·89-s − 36·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 12·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s − 120·225-s + ⋯
L(s)  = 1  − 4·9-s + 2·25-s − 1.24·41-s + 12/7·49-s + 10·81-s + 5.93·89-s − 3.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s − 8·225-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 5^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(682.069\)
Root analytic conductor: \(2.26062\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 5^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.356053566\)
\(L(\frac12)\) \(\approx\) \(1.356053566\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( ( 1 - p T^{2} )^{2} \)
good3$C_2$ \( ( 1 + p T^{2} )^{4} \)
7$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 + 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 - p T^{2} )^{4} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
23$C_2^2$ \( ( 1 + 26 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + 54 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
43$C_2$ \( ( 1 + p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2$ \( ( 1 + p T^{2} )^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 - p T^{2} )^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2$ \( ( 1 + p T^{2} )^{4} \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )^{4} \)
97$C_2$ \( ( 1 - p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69215013626618733383044319880, −7.48068970978746736046319225016, −7.18756683473603371820022916820, −6.73821421789768302157447690143, −6.56447127430724431282716170581, −6.45824831159538789471893326072, −6.17275619222713723282878027554, −5.92594989778316394919276623857, −5.74391522237832299648582130094, −5.38832197140397301019522503100, −5.20501338902674427373497473276, −5.05332110774645029716548460962, −4.86821913666920457197057313589, −4.52205616179358848688405552967, −4.05811579488334999495447688792, −3.50964589217780605333013792647, −3.45068251819807070971461564270, −3.43758080465563911755674165642, −2.77121120543910301898558455563, −2.61877163310922399718376574294, −2.54521300674090170171251205844, −2.09258949983626705239722401272, −1.54201255175378457978122028951, −0.71700709487751678555268787915, −0.48010892409400119125957988672, 0.48010892409400119125957988672, 0.71700709487751678555268787915, 1.54201255175378457978122028951, 2.09258949983626705239722401272, 2.54521300674090170171251205844, 2.61877163310922399718376574294, 2.77121120543910301898558455563, 3.43758080465563911755674165642, 3.45068251819807070971461564270, 3.50964589217780605333013792647, 4.05811579488334999495447688792, 4.52205616179358848688405552967, 4.86821913666920457197057313589, 5.05332110774645029716548460962, 5.20501338902674427373497473276, 5.38832197140397301019522503100, 5.74391522237832299648582130094, 5.92594989778316394919276623857, 6.17275619222713723282878027554, 6.45824831159538789471893326072, 6.56447127430724431282716170581, 6.73821421789768302157447690143, 7.18756683473603371820022916820, 7.48068970978746736046319225016, 7.69215013626618733383044319880

Graph of the $Z$-function along the critical line