| L(s) = 1 | + (1.89 − 1.09i)2-s + (−0.895 − 1.55i)3-s + (1.39 − 2.41i)4-s − 2.18i·5-s + (−3.39 − 1.96i)6-s − 1.73i·8-s + (−0.104 + 0.180i)9-s + (−2.39 − 4.14i)10-s + (−1.10 + 0.637i)11-s − 4.99·12-s + (−3.5 − 0.866i)13-s + (−3.39 + 1.96i)15-s + (0.895 + 1.55i)16-s + (1.5 − 2.59i)17-s + 0.456i·18-s + (5.68 + 3.28i)19-s + ⋯ |
| L(s) = 1 | + (1.34 − 0.773i)2-s + (−0.517 − 0.895i)3-s + (0.697 − 1.20i)4-s − 0.978i·5-s + (−1.38 − 0.800i)6-s − 0.612i·8-s + (−0.0347 + 0.0602i)9-s + (−0.757 − 1.31i)10-s + (−0.332 + 0.192i)11-s − 1.44·12-s + (−0.970 − 0.240i)13-s + (−0.876 + 0.506i)15-s + (0.223 + 0.387i)16-s + (0.363 − 0.630i)17-s + 0.107i·18-s + (1.30 + 0.753i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 + 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.321450 - 2.38260i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.321450 - 2.38260i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 13 | \( 1 + (3.5 + 0.866i)T \) |
| good | 2 | \( 1 + (-1.89 + 1.09i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (0.895 + 1.55i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + 2.18iT - 5T^{2} \) |
| 11 | \( 1 + (1.10 - 0.637i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-5.68 - 3.28i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.79 + 6.56i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.10 - 1.91i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 8.66iT - 31T^{2} \) |
| 37 | \( 1 + (-6 + 3.46i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.20 - 1.27i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.18 + 3.78i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 4.28iT - 47T^{2} \) |
| 53 | \( 1 + 12.1T + 53T^{2} \) |
| 59 | \( 1 + (-7.66 - 4.42i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.37 + 11.0i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.87 + 5.70i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.791 + 0.456i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 3.46iT - 73T^{2} \) |
| 79 | \( 1 + 6T + 79T^{2} \) |
| 83 | \( 1 - 3.55iT - 83T^{2} \) |
| 89 | \( 1 + (-2.52 + 1.45i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-13.1 - 7.61i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.43663376236652240744401618521, −9.595415179604265629080156151602, −8.289297613920826988663679709257, −7.34150167552812145586146284221, −6.27429343856061941558013860965, −5.24256810482218738934865840794, −4.82805757096900479260107752463, −3.48497073732612541650986951648, −2.21130596328021549322311126868, −0.946768860521896181542105793764,
2.72149990093153078315780972755, 3.74252111441710993804958462428, 4.64977096967864172658224527500, 5.47607828098225386784987627837, 6.16473037672556940125161873214, 7.28464483994551031939350551727, 7.79232937711489151074910999446, 9.729257188213040172826199697249, 9.967549535086978706515310635288, 11.32516336337575174425655259730