Properties

Label 2-637-13.10-c1-0-41
Degree $2$
Conductor $637$
Sign $-0.964 + 0.265i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.89 − 1.09i)2-s + (−0.895 − 1.55i)3-s + (1.39 − 2.41i)4-s − 2.18i·5-s + (−3.39 − 1.96i)6-s − 1.73i·8-s + (−0.104 + 0.180i)9-s + (−2.39 − 4.14i)10-s + (−1.10 + 0.637i)11-s − 4.99·12-s + (−3.5 − 0.866i)13-s + (−3.39 + 1.96i)15-s + (0.895 + 1.55i)16-s + (1.5 − 2.59i)17-s + 0.456i·18-s + (5.68 + 3.28i)19-s + ⋯
L(s)  = 1  + (1.34 − 0.773i)2-s + (−0.517 − 0.895i)3-s + (0.697 − 1.20i)4-s − 0.978i·5-s + (−1.38 − 0.800i)6-s − 0.612i·8-s + (−0.0347 + 0.0602i)9-s + (−0.757 − 1.31i)10-s + (−0.332 + 0.192i)11-s − 1.44·12-s + (−0.970 − 0.240i)13-s + (−0.876 + 0.506i)15-s + (0.223 + 0.387i)16-s + (0.363 − 0.630i)17-s + 0.107i·18-s + (1.30 + 0.753i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.964 + 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.964 + 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $-0.964 + 0.265i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (491, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ -0.964 + 0.265i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.321450 - 2.38260i\)
\(L(\frac12)\) \(\approx\) \(0.321450 - 2.38260i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 + (3.5 + 0.866i)T \)
good2 \( 1 + (-1.89 + 1.09i)T + (1 - 1.73i)T^{2} \)
3 \( 1 + (0.895 + 1.55i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + 2.18iT - 5T^{2} \)
11 \( 1 + (1.10 - 0.637i)T + (5.5 - 9.52i)T^{2} \)
17 \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-5.68 - 3.28i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (3.79 + 6.56i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-1.10 - 1.91i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 8.66iT - 31T^{2} \)
37 \( 1 + (-6 + 3.46i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + (2.20 - 1.27i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-2.18 + 3.78i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + 4.28iT - 47T^{2} \)
53 \( 1 + 12.1T + 53T^{2} \)
59 \( 1 + (-7.66 - 4.42i)T + (29.5 + 51.0i)T^{2} \)
61 \( 1 + (-6.37 + 11.0i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-9.87 + 5.70i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (0.791 + 0.456i)T + (35.5 + 61.4i)T^{2} \)
73 \( 1 + 3.46iT - 73T^{2} \)
79 \( 1 + 6T + 79T^{2} \)
83 \( 1 - 3.55iT - 83T^{2} \)
89 \( 1 + (-2.52 + 1.45i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (-13.1 - 7.61i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.43663376236652240744401618521, −9.595415179604265629080156151602, −8.289297613920826988663679709257, −7.34150167552812145586146284221, −6.27429343856061941558013860965, −5.24256810482218738934865840794, −4.82805757096900479260107752463, −3.48497073732612541650986951648, −2.21130596328021549322311126868, −0.946768860521896181542105793764, 2.72149990093153078315780972755, 3.74252111441710993804958462428, 4.64977096967864172658224527500, 5.47607828098225386784987627837, 6.16473037672556940125161873214, 7.28464483994551031939350551727, 7.79232937711489151074910999446, 9.729257188213040172826199697249, 9.967549535086978706515310635288, 11.32516336337575174425655259730

Graph of the $Z$-function along the critical line