| L(s) = 1 | + (1.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (0.5 + 0.866i)4-s + 1.73i·5-s + (1.5 − 0.866i)6-s − 1.73i·8-s + (1 + 1.73i)9-s + (−1.49 + 2.59i)10-s + (4.5 + 2.59i)11-s + 12-s + (−1 + 3.46i)13-s + (1.49 + 0.866i)15-s + (2.49 − 4.33i)16-s + (−3 − 5.19i)17-s + 3.46i·18-s + (1.5 − 0.866i)19-s + ⋯ |
| L(s) = 1 | + (1.06 + 0.612i)2-s + (0.288 − 0.499i)3-s + (0.250 + 0.433i)4-s + 0.774i·5-s + (0.612 − 0.353i)6-s − 0.612i·8-s + (0.333 + 0.577i)9-s + (−0.474 + 0.821i)10-s + (1.35 + 0.783i)11-s + 0.288·12-s + (−0.277 + 0.960i)13-s + (0.387 + 0.223i)15-s + (0.624 − 1.08i)16-s + (−0.727 − 1.26i)17-s + 0.816i·18-s + (0.344 − 0.198i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.711 - 0.702i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.711 - 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.69385 + 1.10572i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.69385 + 1.10572i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 7 | \( 1 \) |
| 13 | \( 1 + (1 - 3.46i)T \) |
| good | 2 | \( 1 + (-1.5 - 0.866i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.5 + 0.866i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 1.73iT - 5T^{2} \) |
| 11 | \( 1 + (-4.5 - 2.59i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (3 + 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.5 + 0.866i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 - 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 1.73iT - 31T^{2} \) |
| 37 | \( 1 + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.5 + 2.59i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.5 + 9.52i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 8.66iT - 47T^{2} \) |
| 53 | \( 1 + 9T + 53T^{2} \) |
| 59 | \( 1 + (-3 + 1.73i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.5 + 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.5 + 4.33i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.5 + 0.866i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 8.66iT - 73T^{2} \) |
| 79 | \( 1 + 5T + 79T^{2} \) |
| 83 | \( 1 + 3.46iT - 83T^{2} \) |
| 89 | \( 1 + (-6 - 3.46i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4.5 - 2.59i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81465526077469446187485662760, −9.693273809155868501962119628376, −9.018532995973055306697499621477, −7.46852369968244475550418428448, −6.88284436342934848642114399837, −6.55734967284248223953985967840, −5.02394722973682661881662539021, −4.37979521354408581843519055815, −3.15308784196051491565154291431, −1.78462523077700191972086828515,
1.39218443189360347516147319258, 3.09067155721651091731584967940, 3.88683415262428967646661788503, 4.57021706512070215732170847634, 5.65996802633039328994567113757, 6.55022966253346916898598805457, 8.193318940468638333753638078889, 8.738198424382278938789984073035, 9.658634634861334117246218853835, 10.63466422616668553527388451937