L(s) = 1 | + (0.651 − 1.12i)2-s + (1.44 − 2.49i)3-s + (0.151 + 0.262i)4-s − 2.88·5-s + (−1.87 − 3.25i)6-s + 3·8-s + (−2.65 − 4.59i)9-s + (−1.87 + 3.25i)10-s + (2.95 − 5.11i)11-s + 0.872·12-s + (−3.31 − 1.41i)13-s + (−4.15 + 7.19i)15-s + (1.65 − 2.86i)16-s + (−0.436 − 0.755i)17-s − 6.90·18-s + (1.44 + 2.49i)19-s + ⋯ |
L(s) = 1 | + (0.460 − 0.797i)2-s + (0.831 − 1.44i)3-s + (0.0756 + 0.131i)4-s − 1.28·5-s + (−0.766 − 1.32i)6-s + 1.06·8-s + (−0.883 − 1.53i)9-s + (−0.593 + 1.02i)10-s + (0.890 − 1.54i)11-s + 0.251·12-s + (−0.920 − 0.391i)13-s + (−1.07 + 1.85i)15-s + (0.412 − 0.715i)16-s + (−0.105 − 0.183i)17-s − 1.62·18-s + (0.330 + 0.572i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.929 + 0.367i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.929 + 0.367i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.396189 - 2.07871i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.396189 - 2.07871i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 13 | \( 1 + (3.31 + 1.41i)T \) |
good | 2 | \( 1 + (-0.651 + 1.12i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.44 + 2.49i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 2.88T + 5T^{2} \) |
| 11 | \( 1 + (-2.95 + 5.11i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.436 + 0.755i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.44 - 2.49i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.30 - 5.72i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.651 - 1.12i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 0.872T + 31T^{2} \) |
| 37 | \( 1 + (0.697 - 1.20i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.75 + 6.50i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.75 + 4.77i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 12.3T + 47T^{2} \) |
| 53 | \( 1 - 9.60T + 53T^{2} \) |
| 59 | \( 1 + (-3.31 - 5.74i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.88 - 4.99i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2 + 3.46i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 5.76T + 73T^{2} \) |
| 79 | \( 1 - 0.605T + 79T^{2} \) |
| 83 | \( 1 - 6.63T + 83T^{2} \) |
| 89 | \( 1 + (-4.32 + 7.48i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3.88 + 6.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52862917633162207505304906989, −9.042544795781123294622184580775, −8.232448319669320290585132270173, −7.55100786847014753191941300454, −7.07475470467055880207413879501, −5.67644904227778997825071169216, −3.89277214277907347779548060582, −3.41924764994475015402629261393, −2.34319591011078898335992378749, −0.950068680988019740981576199563,
2.37829516638545847841447354908, 4.02865999138294273477824972901, 4.31366968624434947174578385894, 5.08539115899838524831019224322, 6.66788936447869144061971598997, 7.43362136098085192960933063189, 8.226819865358564604672378990780, 9.322566733233334626179026948645, 9.929789031761097156703981076889, 10.79250531383465555981853067102