Properties

Label 2-637-7.2-c1-0-13
Degree $2$
Conductor $637$
Sign $-0.386 - 0.922i$
Analytic cond. $5.08647$
Root an. cond. $2.25532$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.190 − 0.330i)2-s + (1.11 + 1.93i)3-s + (0.927 + 1.60i)4-s + (−1.11 + 1.93i)5-s + 0.854·6-s + 1.47·8-s + (−1 + 1.73i)9-s + (0.427 + 0.739i)10-s + (1.5 + 2.59i)11-s + (−2.07 + 3.59i)12-s + 13-s − 5.00·15-s + (−1.57 + 2.72i)16-s + (−3.73 − 6.47i)17-s + (0.381 + 0.661i)18-s + (1.5 − 2.59i)19-s + ⋯
L(s)  = 1  + (0.135 − 0.233i)2-s + (0.645 + 1.11i)3-s + (0.463 + 0.802i)4-s + (−0.499 + 0.866i)5-s + 0.348·6-s + 0.520·8-s + (−0.333 + 0.577i)9-s + (0.135 + 0.233i)10-s + (0.452 + 0.783i)11-s + (−0.598 + 1.03i)12-s + 0.277·13-s − 1.29·15-s + (−0.393 + 0.681i)16-s + (−0.906 − 1.56i)17-s + (0.0900 + 0.155i)18-s + (0.344 − 0.596i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 - 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 637 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(637\)    =    \(7^{2} \cdot 13\)
Sign: $-0.386 - 0.922i$
Analytic conductor: \(5.08647\)
Root analytic conductor: \(2.25532\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{637} (79, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 637,\ (\ :1/2),\ -0.386 - 0.922i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.13789 + 1.71065i\)
\(L(\frac12)\) \(\approx\) \(1.13789 + 1.71065i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
13 \( 1 - T \)
good2 \( 1 + (-0.190 + 0.330i)T + (-1 - 1.73i)T^{2} \)
3 \( 1 + (-1.11 - 1.93i)T + (-1.5 + 2.59i)T^{2} \)
5 \( 1 + (1.11 - 1.93i)T + (-2.5 - 4.33i)T^{2} \)
11 \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (3.73 + 6.47i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-1.5 + 2.59i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-1.88 + 3.25i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + 4.47T + 29T^{2} \)
31 \( 1 + (-2.5 - 4.33i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-4.35 + 7.54i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + 4.47T + 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 + (-0.736 + 1.27i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (0.736 + 1.27i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-3.73 - 6.47i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-1.5 + 2.59i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-1.5 - 2.59i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 - 8.94T + 71T^{2} \)
73 \( 1 + (-5.35 - 9.27i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (5.35 - 9.27i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + (1.11 - 1.93i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 - 17.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.03941675167554705184430334832, −9.982805404547548157445837104087, −9.179818129592608039024636830643, −8.383531984492342104984833025764, −7.07142712545683308407459715000, −6.91975938625982184569873604364, −4.90336449348399530239699003410, −4.07349417103731306166888072790, −3.22908109928343167093342924606, −2.45378857554826320941896047546, 1.07959789309069802873356311898, 1.97072174160825553029468564769, 3.58190473073688495419791505823, 4.84654172195487196766523018450, 6.06978223505032457584478250949, 6.63557916723416195666476517112, 7.81633973978918382433892806065, 8.317530184685738677080348976393, 9.181774866275614461076697155143, 10.35033741356751167972868544244

Graph of the $Z$-function along the critical line