Properties

Label 4-6300e2-1.1-c1e2-0-2
Degree $4$
Conductor $39690000$
Sign $1$
Analytic cond. $2530.66$
Root an. cond. $7.09265$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·19-s + 4·31-s − 12·41-s − 49-s + 24·59-s − 20·61-s − 24·71-s − 16·79-s + 12·89-s + 12·101-s − 28·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯
L(s)  = 1  − 0.917·19-s + 0.718·31-s − 1.87·41-s − 1/7·49-s + 3.12·59-s − 2.56·61-s − 2.84·71-s − 1.80·79-s + 1.27·89-s + 1.19·101-s − 2.68·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 39690000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 39690000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(39690000\)    =    \(2^{4} \cdot 3^{4} \cdot 5^{4} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(2530.66\)
Root analytic conductor: \(7.09265\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 39690000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4887771792\)
\(L(\frac12)\) \(\approx\) \(0.4887771792\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7$C_2$ \( 1 + T^{2} \)
good11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.382100079990545844759016527139, −7.79584653969953619602081406860, −7.56915523152940761542252221423, −7.05668926364497742611776494818, −6.91426317433602509382078626176, −6.32657597080790702260491555873, −6.24406772921903899852710795949, −5.74437763488870429412853053691, −5.39651702837172225646394531581, −4.82220770363466096017042042723, −4.77910875495351423081792841561, −4.09142190210313933200620933421, −3.99144249593337090452951289436, −3.30408898715098432064263981032, −3.09010947827642034964368583757, −2.40333385791447483184842600513, −2.25583481823764720880552468080, −1.35870845172254980656310165912, −1.30606241297283033813531609135, −0.17588756095700603075518696620, 0.17588756095700603075518696620, 1.30606241297283033813531609135, 1.35870845172254980656310165912, 2.25583481823764720880552468080, 2.40333385791447483184842600513, 3.09010947827642034964368583757, 3.30408898715098432064263981032, 3.99144249593337090452951289436, 4.09142190210313933200620933421, 4.77910875495351423081792841561, 4.82220770363466096017042042723, 5.39651702837172225646394531581, 5.74437763488870429412853053691, 6.24406772921903899852710795949, 6.32657597080790702260491555873, 6.91426317433602509382078626176, 7.05668926364497742611776494818, 7.56915523152940761542252221423, 7.79584653969953619602081406860, 8.382100079990545844759016527139

Graph of the $Z$-function along the critical line