Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5 \cdot 7 $
Sign $-0.174 + 0.984i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)2-s + (1.11 − 1.32i)3-s + (0.499 − 0.866i)4-s − 5-s + (0.296 − 1.70i)6-s + (−0.142 + 2.64i)7-s − 0.999i·8-s + (−0.535 − 2.95i)9-s + (−0.866 + 0.5i)10-s − 4.86i·11-s + (−0.596 − 1.62i)12-s + (3.42 − 1.97i)13-s + (1.19 + 2.35i)14-s + (−1.11 + 1.32i)15-s + (−0.5 − 0.866i)16-s + (−1.25 − 2.16i)17-s + ⋯
L(s)  = 1  + (0.612 − 0.353i)2-s + (0.640 − 0.767i)3-s + (0.249 − 0.433i)4-s − 0.447·5-s + (0.121 − 0.696i)6-s + (−0.0537 + 0.998i)7-s − 0.353i·8-s + (−0.178 − 0.983i)9-s + (−0.273 + 0.158i)10-s − 1.46i·11-s + (−0.172 − 0.469i)12-s + (0.948 − 0.547i)13-s + (0.320 + 0.630i)14-s + (−0.286 + 0.343i)15-s + (−0.125 − 0.216i)16-s + (−0.303 − 0.526i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.174 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.174 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(630\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $-0.174 + 0.984i$
motivic weight  =  \(1\)
character  :  $\chi_{630} (551, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 630,\ (\ :1/2),\ -0.174 + 0.984i)\)
\(L(1)\)  \(\approx\)  \(1.50936 - 1.80095i\)
\(L(\frac12)\)  \(\approx\)  \(1.50936 - 1.80095i\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-0.866 + 0.5i)T \)
3 \( 1 + (-1.11 + 1.32i)T \)
5 \( 1 + T \)
7 \( 1 + (0.142 - 2.64i)T \)
good11 \( 1 + 4.86iT - 11T^{2} \)
13 \( 1 + (-3.42 + 1.97i)T + (6.5 - 11.2i)T^{2} \)
17 \( 1 + (1.25 + 2.16i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (0.962 + 0.555i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + 3.30iT - 23T^{2} \)
29 \( 1 + (-3.70 - 2.14i)T + (14.5 + 25.1i)T^{2} \)
31 \( 1 + (-6.40 - 3.69i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (1.82 - 3.15i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-3.90 - 6.77i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (3.62 - 6.28i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-5.84 - 10.1i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (4.92 - 2.84i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (0.696 - 1.20i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (7.97 - 4.60i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (3.00 - 5.20i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + 9.66iT - 71T^{2} \)
73 \( 1 + (-12.0 + 6.96i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-3.91 - 6.78i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + (0.393 - 0.682i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (-7.49 + 12.9i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-14.9 - 8.64i)T + (48.5 + 84.0i)T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.64808624372945347631445633924, −9.237731602217248444866115589726, −8.537255498061096014827229452095, −7.924851494029873008403646375475, −6.43271117023128235433652923058, −6.06314096108882553917117881630, −4.69130933069121948361761672255, −3.22534089175938400116702085046, −2.79419841022118076998175201484, −1.07234254807158215411778366456, 2.08266267775105387332022303230, 3.69462308562220527571616774545, 4.12719000256201453553353654698, 5.00265868920984207840504603792, 6.44493859792062706720014503459, 7.34533129134457254086078528538, 8.086755360301346491565794035068, 9.046036518172461836890104292854, 10.06443119509068725317552242115, 10.72051135661149419849365080625

Graph of the $Z$-function along the critical line