# Properties

 Degree 2 Conductor $2 \cdot 3^{2} \cdot 5 \cdot 7$ Sign $0.968 - 0.250i$ Motivic weight 1 Primitive yes Self-dual no Analytic rank 0

# Related objects

## Dirichlet series

 L(s)  = 1 + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−0.5 + 0.866i)5-s + (2 − 1.73i)7-s + 0.999·8-s + (−0.499 − 0.866i)10-s + (−0.5 − 0.866i)11-s + 13-s + (0.499 + 2.59i)14-s + (−0.5 + 0.866i)16-s + (1.5 − 2.59i)19-s + 0.999·20-s + 0.999·22-s + (3.5 − 6.06i)23-s + (−0.499 − 0.866i)25-s + (−0.5 + 0.866i)26-s + ⋯
 L(s)  = 1 + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.223 + 0.387i)5-s + (0.755 − 0.654i)7-s + 0.353·8-s + (−0.158 − 0.273i)10-s + (−0.150 − 0.261i)11-s + 0.277·13-s + (0.133 + 0.694i)14-s + (−0.125 + 0.216i)16-s + (0.344 − 0.596i)19-s + 0.223·20-s + 0.213·22-s + (0.729 − 1.26i)23-s + (−0.0999 − 0.173i)25-s + (−0.0980 + 0.169i)26-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 - 0.250i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 $$d$$ = $$2$$ $$N$$ = $$630$$    =    $$2 \cdot 3^{2} \cdot 5 \cdot 7$$ $$\varepsilon$$ = $0.968 - 0.250i$ motivic weight = $$1$$ character : $\chi_{630} (541, \cdot )$ primitive : yes self-dual : no analytic rank = $$0$$ Selberg data = $$(2,\ 630,\ (\ :1/2),\ 0.968 - 0.250i)$$ $$L(1)$$ $$\approx$$ $$1.26016 + 0.160587i$$ $$L(\frac12)$$ $$\approx$$ $$1.26016 + 0.160587i$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

## Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$where, for $p \notin \{2,\;3,\;5,\;7\}$,$$F_p(T)$$ is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 $$1 + (0.5 - 0.866i)T$$
3 $$1$$
5 $$1 + (0.5 - 0.866i)T$$
7 $$1 + (-2 + 1.73i)T$$
good11 $$1 + (0.5 + 0.866i)T + (-5.5 + 9.52i)T^{2}$$
13 $$1 - T + 13T^{2}$$
17 $$1 + (-8.5 + 14.7i)T^{2}$$
19 $$1 + (-1.5 + 2.59i)T + (-9.5 - 16.4i)T^{2}$$
23 $$1 + (-3.5 + 6.06i)T + (-11.5 - 19.9i)T^{2}$$
29 $$1 - 8T + 29T^{2}$$
31 $$1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2}$$
37 $$1 + (5.5 - 9.52i)T + (-18.5 - 32.0i)T^{2}$$
41 $$1 - 11T + 41T^{2}$$
43 $$1 - 8T + 43T^{2}$$
47 $$1 + (2.5 - 4.33i)T + (-23.5 - 40.7i)T^{2}$$
53 $$1 + (5.5 + 9.52i)T + (-26.5 + 45.8i)T^{2}$$
59 $$1 + (-2 - 3.46i)T + (-29.5 + 51.0i)T^{2}$$
61 $$1 + (-30.5 - 52.8i)T^{2}$$
67 $$1 + (-33.5 + 58.0i)T^{2}$$
71 $$1 - 6T + 71T^{2}$$
73 $$1 + (-3 - 5.19i)T + (-36.5 + 63.2i)T^{2}$$
79 $$1 + (-4 + 6.92i)T + (-39.5 - 68.4i)T^{2}$$
83 $$1 + 8T + 83T^{2}$$
89 $$1 + (5 - 8.66i)T + (-44.5 - 77.0i)T^{2}$$
97 $$1 + 16T + 97T^{2}$$
show less
\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}

## Imaginary part of the first few zeros on the critical line

−10.70283156795102607203305589936, −9.762326456317124792704289626831, −8.613731162274783637990180096929, −8.057337288023372939254638159756, −7.06721290904608414378550394850, −6.41230963520796542499914952544, −5.10031771781455566574995644038, −4.29676874573128115283301916888, −2.82452359752624132613041189539, −0.988148358679682787051604993347, 1.26631601636406220354746746157, 2.54682111093608289868636870610, 3.87201001363945203039859530711, 4.94290701192483883303318433442, 5.84806422441936973010158090255, 7.35744104645292134380895109596, 8.065587700764027843232734547504, 8.938693709671863553690117432568, 9.579244728233134039099603337953, 10.72413962993683057602993174288