Properties

Label 8-630e4-1.1-c1e4-0-10
Degree $8$
Conductor $157529610000$
Sign $1$
Analytic cond. $640.428$
Root an. cond. $2.24289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s − 6·3-s + 10·4-s + 2·5-s − 24·6-s − 2·7-s + 20·8-s + 21·9-s + 8·10-s − 60·12-s − 4·13-s − 8·14-s − 12·15-s + 35·16-s + 84·18-s − 4·19-s + 20·20-s + 12·21-s − 120·24-s + 25-s − 16·26-s − 54·27-s − 20·28-s + 6·29-s − 48·30-s + 8·31-s + 56·32-s + ⋯
L(s)  = 1  + 2.82·2-s − 3.46·3-s + 5·4-s + 0.894·5-s − 9.79·6-s − 0.755·7-s + 7.07·8-s + 7·9-s + 2.52·10-s − 17.3·12-s − 1.10·13-s − 2.13·14-s − 3.09·15-s + 35/4·16-s + 19.7·18-s − 0.917·19-s + 4.47·20-s + 2.61·21-s − 24.4·24-s + 1/5·25-s − 3.13·26-s − 10.3·27-s − 3.77·28-s + 1.11·29-s − 8.76·30-s + 1.43·31-s + 9.89·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(640.428\)
Root analytic conductor: \(2.24289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(4.061952489\)
\(L(\frac12)\) \(\approx\) \(4.061952489\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 - T )^{4} \)
3$C_2$ \( ( 1 + p T + p T^{2} )^{2} \)
5$C_2$ \( ( 1 - T + T^{2} )^{2} \)
7$C_2^2$ \( 1 + 2 T - 3 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
good11$C_2^3$ \( 1 - 4 T^{2} - 105 T^{4} - 4 p^{2} T^{6} + p^{4} T^{8} \)
13$C_2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 7 T + p T^{2} )^{2} \)
17$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
19$D_4\times C_2$ \( 1 + 4 T - 8 T^{2} - 56 T^{3} - 89 T^{4} - 56 p T^{5} - 8 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
23$C_2^3$ \( 1 + 26 T^{2} + 147 T^{4} + 26 p^{2} T^{6} + p^{4} T^{8} \)
29$D_4\times C_2$ \( 1 - 6 T - 13 T^{2} + 54 T^{3} + 516 T^{4} + 54 p T^{5} - 13 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \)
31$D_{4}$ \( ( 1 - 4 T + 48 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 8 T - 8 T^{2} + 16 T^{3} + 1447 T^{4} + 16 p T^{5} - 8 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
41$C_2^2$ \( ( 1 + 9 T + 40 T^{2} + 9 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - T - 42 T^{2} - p T^{3} + p^{2} T^{4} )^{2} \)
47$D_{4}$ \( ( 1 + 6 T + 85 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 + 12 T + 20 T^{2} + 216 T^{3} + 4935 T^{4} + 216 p T^{5} + 20 p^{2} T^{6} + 12 p^{3} T^{7} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 - 12 T + 136 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 + 8 T + 66 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_{4}$ \( ( 1 - 4 T + 66 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 124 T^{2} + p^{2} T^{4} )^{2} \)
73$D_4\times C_2$ \( 1 - 8 T - 26 T^{2} + 448 T^{3} - 1901 T^{4} + 448 p T^{5} - 26 p^{2} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \)
79$D_{4}$ \( ( 1 - 4 T - 4 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 9 T - 2 T^{2} - 9 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
97$D_4\times C_2$ \( 1 + 4 T - 110 T^{2} - 272 T^{3} + 4915 T^{4} - 272 p T^{5} - 110 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.35452537391707474234089044469, −6.78837219976460915282642804045, −6.77999265447686058270460046657, −6.74636387326027972868716480144, −6.55867219498931389760065422526, −6.37403069628029111972849825689, −5.99491434951561075022110030736, −5.96824082078872918442288110566, −5.74066841585952262322010629659, −5.41222437166460181493742530735, −5.04683163232396621109634286138, −4.99944674627010406895746814650, −4.93343564920020681877971557824, −4.51941725889299800964792239875, −4.48972574018327275532394879511, −4.15859256428984410742948354755, −3.60784697836687808586014191675, −3.52766115861853087528864958122, −3.19472072902014304202356822692, −2.57737460756336344666404610470, −2.32563700120707682699322039336, −2.16911008402207231928102689453, −1.42410851180371216897370782545, −1.23657382790840338906751105788, −0.45156741339020191454322610194, 0.45156741339020191454322610194, 1.23657382790840338906751105788, 1.42410851180371216897370782545, 2.16911008402207231928102689453, 2.32563700120707682699322039336, 2.57737460756336344666404610470, 3.19472072902014304202356822692, 3.52766115861853087528864958122, 3.60784697836687808586014191675, 4.15859256428984410742948354755, 4.48972574018327275532394879511, 4.51941725889299800964792239875, 4.93343564920020681877971557824, 4.99944674627010406895746814650, 5.04683163232396621109634286138, 5.41222437166460181493742530735, 5.74066841585952262322010629659, 5.96824082078872918442288110566, 5.99491434951561075022110030736, 6.37403069628029111972849825689, 6.55867219498931389760065422526, 6.74636387326027972868716480144, 6.77999265447686058270460046657, 6.78837219976460915282642804045, 7.35452537391707474234089044469

Graph of the $Z$-function along the critical line