Properties

Label 4-630e2-1.1-c1e2-0-77
Degree $4$
Conductor $396900$
Sign $1$
Analytic cond. $25.3066$
Root an. cond. $2.24289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s − 2·5-s − 12·11-s + 16-s − 8·19-s + 2·20-s − 25-s + 4·29-s − 4·31-s − 12·41-s + 12·44-s − 49-s + 24·55-s − 8·59-s − 24·61-s − 64-s − 24·71-s + 8·76-s + 32·79-s − 2·80-s + 28·89-s + 16·95-s + 100-s − 12·101-s − 28·109-s − 4·116-s + 86·121-s + ⋯
L(s)  = 1  − 1/2·4-s − 0.894·5-s − 3.61·11-s + 1/4·16-s − 1.83·19-s + 0.447·20-s − 1/5·25-s + 0.742·29-s − 0.718·31-s − 1.87·41-s + 1.80·44-s − 1/7·49-s + 3.23·55-s − 1.04·59-s − 3.07·61-s − 1/8·64-s − 2.84·71-s + 0.917·76-s + 3.60·79-s − 0.223·80-s + 2.96·89-s + 1.64·95-s + 1/10·100-s − 1.19·101-s − 2.68·109-s − 0.371·116-s + 7.81·121-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(396900\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(25.3066\)
Root analytic conductor: \(2.24289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 396900,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
7$C_2$ \( 1 + T^{2} \)
good11$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 90 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 14 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.55657875152966429594158260903, −10.22779761165845466921252137232, −9.447318067158642027712950685219, −9.060388869657719106444782658564, −8.407880945464455177552508213826, −8.162158020430392979246648358149, −7.70957274759391002765155104293, −7.67206995858947566629658740207, −6.90811881186133900093805027418, −6.22567570122555689334523103263, −5.81983847326637871828440474152, −5.05665323546398163036995543833, −4.90870091823457769047657154342, −4.45817607095627304265987613552, −3.66733773100512465290388737142, −3.08022572185866180901814861037, −2.56552214296133310771372601527, −1.86453934139038829702884379634, 0, 0, 1.86453934139038829702884379634, 2.56552214296133310771372601527, 3.08022572185866180901814861037, 3.66733773100512465290388737142, 4.45817607095627304265987613552, 4.90870091823457769047657154342, 5.05665323546398163036995543833, 5.81983847326637871828440474152, 6.22567570122555689334523103263, 6.90811881186133900093805027418, 7.67206995858947566629658740207, 7.70957274759391002765155104293, 8.162158020430392979246648358149, 8.407880945464455177552508213826, 9.060388869657719106444782658564, 9.447318067158642027712950685219, 10.22779761165845466921252137232, 10.55657875152966429594158260903

Graph of the $Z$-function along the critical line