Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5 \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 7-s + 8-s − 10-s + 2·13-s + 14-s + 16-s + 6·17-s + 8·19-s − 20-s + 25-s + 2·26-s + 28-s − 6·29-s − 4·31-s + 32-s + 6·34-s − 35-s − 10·37-s + 8·38-s − 40-s + 6·41-s − 4·43-s + 49-s + 50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s + 0.353·8-s − 0.316·10-s + 0.554·13-s + 0.267·14-s + 1/4·16-s + 1.45·17-s + 1.83·19-s − 0.223·20-s + 1/5·25-s + 0.392·26-s + 0.188·28-s − 1.11·29-s − 0.718·31-s + 0.176·32-s + 1.02·34-s − 0.169·35-s − 1.64·37-s + 1.29·38-s − 0.158·40-s + 0.937·41-s − 0.609·43-s + 1/7·49-s + 0.141·50-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 630 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(630\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{630} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 630,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $2.33457$
$L(\frac12)$  $\approx$  $2.33457$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;5,\;7\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
good11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.77509849140855743529390892850, −9.857402504230161582528854630050, −8.790922026040486061843055845413, −7.67845508591579519153392227466, −7.19801386358340821477645347390, −5.76093596813527562032392850894, −5.20272031164140682979668587117, −3.88273199773070623460496754838, −3.13125557587754062819456448397, −1.41006155845401754086894809680, 1.41006155845401754086894809680, 3.13125557587754062819456448397, 3.88273199773070623460496754838, 5.20272031164140682979668587117, 5.76093596813527562032392850894, 7.19801386358340821477645347390, 7.67845508591579519153392227466, 8.790922026040486061843055845413, 9.857402504230161582528854630050, 10.77509849140855743529390892850

Graph of the $Z$-function along the critical line