Properties

Label 24-63e12-1.1-c5e12-0-0
Degree $24$
Conductor $3.909\times 10^{21}$
Sign $1$
Analytic cond. $1.13243\times 10^{12}$
Root an. cond. $3.17870$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·4-s + 142·7-s + 308·13-s + 994·16-s + 9.42e3·19-s + 5.61e3·25-s + 710·28-s + 2.34e4·31-s − 1.81e4·37-s − 8.73e4·43-s + 2.52e4·49-s + 1.54e3·52-s − 1.61e4·61-s + 4.81e4·64-s + 1.44e5·67-s − 1.00e5·73-s + 4.71e4·76-s + 1.01e5·79-s + 4.37e4·91-s − 8.66e5·97-s + 2.80e4·100-s + 1.45e5·103-s + 2.43e5·109-s + 1.41e5·112-s + 6.37e4·121-s + 1.17e5·124-s + 127-s + ⋯
L(s)  = 1  + 5/32·4-s + 1.09·7-s + 0.505·13-s + 0.970·16-s + 5.98·19-s + 1.79·25-s + 0.171·28-s + 4.37·31-s − 2.18·37-s − 7.20·43-s + 1.50·49-s + 0.0789·52-s − 0.555·61-s + 1.46·64-s + 3.93·67-s − 2.19·73-s + 0.935·76-s + 1.83·79-s + 0.553·91-s − 9.34·97-s + 0.280·100-s + 1.34·103-s + 1.96·109-s + 1.06·112-s + 0.395·121-s + 0.683·124-s + 5.50e−6·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 7^{12}\right)^{s/2} \, \Gamma_{\C}(s)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{24} \cdot 7^{12}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{12} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(24\)
Conductor: \(3^{24} \cdot 7^{12}\)
Sign: $1$
Analytic conductor: \(1.13243\times 10^{12}\)
Root analytic conductor: \(3.17870\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((24,\ 3^{24} \cdot 7^{12} ,\ ( \ : [5/2]^{12} ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(25.78670721\)
\(L(\frac12)\) \(\approx\) \(25.78670721\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( ( 1 - 71 T - 724 p T^{2} + 6691 p^{3} T^{3} - 724 p^{6} T^{4} - 71 p^{10} T^{5} + p^{15} T^{6} )^{2} \)
good2 \( 1 - 5 T^{2} - 969 T^{4} - 19149 p T^{6} + 13375 p^{2} T^{8} + 1343731 p^{4} T^{10} + 21675145 p^{6} T^{12} + 1343731 p^{14} T^{14} + 13375 p^{22} T^{16} - 19149 p^{31} T^{18} - 969 p^{40} T^{20} - 5 p^{50} T^{22} + p^{60} T^{24} \)
5 \( 1 - 5612 T^{2} - 2201904 T^{4} + 22496200452 T^{6} + 212632262258536 T^{8} - 406850851265056172 T^{10} - \)\(10\!\cdots\!54\)\( T^{12} - 406850851265056172 p^{10} T^{14} + 212632262258536 p^{20} T^{16} + 22496200452 p^{30} T^{18} - 2201904 p^{40} T^{20} - 5612 p^{50} T^{22} + p^{60} T^{24} \)
11 \( 1 - 63728 T^{2} - 38186321040 T^{4} + 367330434605964 T^{6} + \)\(59\!\cdots\!48\)\( T^{8} + \)\(32\!\cdots\!84\)\( T^{10} - \)\(11\!\cdots\!34\)\( T^{12} + \)\(32\!\cdots\!84\)\( p^{10} T^{14} + \)\(59\!\cdots\!48\)\( p^{20} T^{16} + 367330434605964 p^{30} T^{18} - 38186321040 p^{40} T^{20} - 63728 p^{50} T^{22} + p^{60} T^{24} \)
13 \( ( 1 - 77 T + 329903 T^{2} + 2901514 T^{3} + 329903 p^{5} T^{4} - 77 p^{10} T^{5} + p^{15} T^{6} )^{4} \)
17 \( 1 - 366750 p T^{2} + 20433382630821 T^{4} - 49353060269357285818 T^{6} + \)\(98\!\cdots\!70\)\( T^{8} - \)\(16\!\cdots\!14\)\( T^{10} + \)\(24\!\cdots\!45\)\( T^{12} - \)\(16\!\cdots\!14\)\( p^{10} T^{14} + \)\(98\!\cdots\!70\)\( p^{20} T^{16} - 49353060269357285818 p^{30} T^{18} + 20433382630821 p^{40} T^{20} - 366750 p^{51} T^{22} + p^{60} T^{24} \)
19 \( ( 1 - 4711 T + 7468820 T^{2} - 15280705839 T^{3} + 52954224290656 T^{4} - 4398376818264401 p T^{5} + 245964098840846134 p^{2} T^{6} - 4398376818264401 p^{6} T^{7} + 52954224290656 p^{10} T^{8} - 15280705839 p^{15} T^{9} + 7468820 p^{20} T^{10} - 4711 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
23 \( 1 - 28426626 T^{2} + 428818666979349 T^{4} - \)\(46\!\cdots\!94\)\( T^{6} + \)\(41\!\cdots\!02\)\( T^{8} - \)\(31\!\cdots\!38\)\( T^{10} + \)\(20\!\cdots\!17\)\( T^{12} - \)\(31\!\cdots\!38\)\( p^{10} T^{14} + \)\(41\!\cdots\!02\)\( p^{20} T^{16} - \)\(46\!\cdots\!94\)\( p^{30} T^{18} + 428818666979349 p^{40} T^{20} - 28426626 p^{50} T^{22} + p^{60} T^{24} \)
29 \( ( 1 + 56877260 T^{2} + 2153523833778304 T^{4} + \)\(50\!\cdots\!14\)\( T^{6} + 2153523833778304 p^{10} T^{8} + 56877260 p^{20} T^{10} + p^{30} T^{12} )^{2} \)
31 \( ( 1 - 11711 T + 45990357 T^{2} + 101948632338 T^{3} - 1148073413015249 T^{4} - 1776754603256154347 T^{5} + \)\(38\!\cdots\!26\)\( T^{6} - 1776754603256154347 p^{5} T^{7} - 1148073413015249 p^{10} T^{8} + 101948632338 p^{15} T^{9} + 45990357 p^{20} T^{10} - 11711 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
37 \( ( 1 + 9091 T - 48844230 T^{2} - 1261544169639 T^{3} - 2996267741214776 T^{4} + 39461171991303043615 T^{5} + \)\(57\!\cdots\!20\)\( T^{6} + 39461171991303043615 p^{5} T^{7} - 2996267741214776 p^{10} T^{8} - 1261544169639 p^{15} T^{9} - 48844230 p^{20} T^{10} + 9091 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
41 \( ( 1 - 32763274 T^{2} + 36122988699522367 T^{4} - \)\(94\!\cdots\!80\)\( T^{6} + 36122988699522367 p^{10} T^{8} - 32763274 p^{20} T^{10} + p^{30} T^{12} )^{2} \)
43 \( ( 1 + 21843 T + 434197953 T^{2} + 4778588910994 T^{3} + 434197953 p^{5} T^{4} + 21843 p^{10} T^{5} + p^{15} T^{6} )^{4} \)
47 \( 1 - 762615162 T^{2} + 276461698947460533 T^{4} - \)\(68\!\cdots\!82\)\( T^{6} + \)\(14\!\cdots\!82\)\( T^{8} - \)\(26\!\cdots\!26\)\( T^{10} + \)\(48\!\cdots\!25\)\( T^{12} - \)\(26\!\cdots\!26\)\( p^{10} T^{14} + \)\(14\!\cdots\!82\)\( p^{20} T^{16} - \)\(68\!\cdots\!82\)\( p^{30} T^{18} + 276461698947460533 p^{40} T^{20} - 762615162 p^{50} T^{22} + p^{60} T^{24} \)
53 \( 1 - 1842711660 T^{2} + 1873007141082901776 T^{4} - \)\(12\!\cdots\!72\)\( T^{6} + \)\(62\!\cdots\!60\)\( T^{8} - \)\(25\!\cdots\!56\)\( T^{10} + \)\(10\!\cdots\!30\)\( T^{12} - \)\(25\!\cdots\!56\)\( p^{10} T^{14} + \)\(62\!\cdots\!60\)\( p^{20} T^{16} - \)\(12\!\cdots\!72\)\( p^{30} T^{18} + 1873007141082901776 p^{40} T^{20} - 1842711660 p^{50} T^{22} + p^{60} T^{24} \)
59 \( 1 + 405776592 T^{2} - 1033610905572789456 T^{4} - \)\(62\!\cdots\!84\)\( T^{6} + \)\(71\!\cdots\!76\)\( T^{8} - \)\(62\!\cdots\!48\)\( T^{10} - \)\(43\!\cdots\!18\)\( T^{12} - \)\(62\!\cdots\!48\)\( p^{10} T^{14} + \)\(71\!\cdots\!76\)\( p^{20} T^{16} - \)\(62\!\cdots\!84\)\( p^{30} T^{18} - 1033610905572789456 p^{40} T^{20} + 405776592 p^{50} T^{22} + p^{60} T^{24} \)
61 \( ( 1 + 8078 T - 1972526323 T^{2} - 137138925462 T^{3} + 2364406542104704030 T^{4} - \)\(51\!\cdots\!86\)\( T^{5} - \)\(22\!\cdots\!15\)\( T^{6} - \)\(51\!\cdots\!86\)\( p^{5} T^{7} + 2364406542104704030 p^{10} T^{8} - 137138925462 p^{15} T^{9} - 1972526323 p^{20} T^{10} + 8078 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
67 \( ( 1 - 72325 T - 323604628 T^{2} + 3086336722323 T^{3} + 8714131286027959888 T^{4} - \)\(17\!\cdots\!97\)\( T^{5} - \)\(52\!\cdots\!26\)\( T^{6} - \)\(17\!\cdots\!97\)\( p^{5} T^{7} + 8714131286027959888 p^{10} T^{8} + 3086336722323 p^{15} T^{9} - 323604628 p^{20} T^{10} - 72325 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
71 \( ( 1 + 7343984298 T^{2} + 25986157270151134623 T^{4} + \)\(57\!\cdots\!08\)\( T^{6} + 25986157270151134623 p^{10} T^{8} + 7343984298 p^{20} T^{10} + p^{30} T^{12} )^{2} \)
73 \( ( 1 + 50029 T - 4199541354 T^{2} - 81413963652357 T^{3} + 20603785162045774216 T^{4} + \)\(22\!\cdots\!61\)\( T^{5} - \)\(42\!\cdots\!84\)\( T^{6} + \)\(22\!\cdots\!61\)\( p^{5} T^{7} + 20603785162045774216 p^{10} T^{8} - 81413963652357 p^{15} T^{9} - 4199541354 p^{20} T^{10} + 50029 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
79 \( ( 1 - 50997 T - 3066101115 T^{2} + 115573939091150 T^{3} + 4359756628739682567 T^{4} + \)\(14\!\cdots\!11\)\( T^{5} - \)\(24\!\cdots\!14\)\( T^{6} + \)\(14\!\cdots\!11\)\( p^{5} T^{7} + 4359756628739682567 p^{10} T^{8} + 115573939091150 p^{15} T^{9} - 3066101115 p^{20} T^{10} - 50997 p^{25} T^{11} + p^{30} T^{12} )^{2} \)
83 \( ( 1 + 15907224432 T^{2} + \)\(11\!\cdots\!44\)\( T^{4} + \)\(52\!\cdots\!98\)\( T^{6} + \)\(11\!\cdots\!44\)\( p^{10} T^{8} + 15907224432 p^{20} T^{10} + p^{30} T^{12} )^{2} \)
89 \( 1 - 30683976398 T^{2} + \)\(53\!\cdots\!01\)\( T^{4} - \)\(65\!\cdots\!94\)\( T^{6} + \)\(61\!\cdots\!06\)\( T^{8} - \)\(46\!\cdots\!10\)\( T^{10} + \)\(28\!\cdots\!89\)\( T^{12} - \)\(46\!\cdots\!10\)\( p^{10} T^{14} + \)\(61\!\cdots\!06\)\( p^{20} T^{16} - \)\(65\!\cdots\!94\)\( p^{30} T^{18} + \)\(53\!\cdots\!01\)\( p^{40} T^{20} - 30683976398 p^{50} T^{22} + p^{60} T^{24} \)
97 \( ( 1 + 216524 T + 31765510816 T^{2} + 3171927842758234 T^{3} + 31765510816 p^{5} T^{4} + 216524 p^{10} T^{5} + p^{15} T^{6} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{24} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−4.51191873812479901716679137682, −4.45451588099477670492902268806, −3.90166697080233916253372226402, −3.78453504970872479311715876993, −3.76952127395953585647105708599, −3.63249163008738492953872051425, −3.46680357121096204315094465715, −3.40359457452569665556106217238, −3.37438777597830535738007355923, −2.89974664570084167583647620332, −2.77364839949014680663238920139, −2.75374132522611519442951574506, −2.68990965412730396431462304738, −2.62174599366163637751140324053, −2.25771672610148598719412816747, −1.66693094890332641188782487930, −1.61384001157345353117703984267, −1.59873024521014859638442577510, −1.31221771038398314558836425364, −1.25811851216410797731156737387, −1.16674782002206560927525559365, −0.815280316097173741732453913993, −0.77828172390399817671959658371, −0.35040597774110444556681253239, −0.28655212983406735446375631174, 0.28655212983406735446375631174, 0.35040597774110444556681253239, 0.77828172390399817671959658371, 0.815280316097173741732453913993, 1.16674782002206560927525559365, 1.25811851216410797731156737387, 1.31221771038398314558836425364, 1.59873024521014859638442577510, 1.61384001157345353117703984267, 1.66693094890332641188782487930, 2.25771672610148598719412816747, 2.62174599366163637751140324053, 2.68990965412730396431462304738, 2.75374132522611519442951574506, 2.77364839949014680663238920139, 2.89974664570084167583647620332, 3.37438777597830535738007355923, 3.40359457452569665556106217238, 3.46680357121096204315094465715, 3.63249163008738492953872051425, 3.76952127395953585647105708599, 3.78453504970872479311715876993, 3.90166697080233916253372226402, 4.45451588099477670492902268806, 4.51191873812479901716679137682

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.