Properties

Degree $2$
Conductor $63$
Sign $-0.986 - 0.166i$
Motivic weight $3$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.21 + 2.43i)2-s + (7.83 − 13.5i)4-s + (6.38 + 11.0i)5-s + (2.53 + 18.3i)7-s + 37.3i·8-s + (−53.7 − 31.0i)10-s + (−46.8 − 27.0i)11-s + 8.85i·13-s + (−55.3 − 71.1i)14-s + (−28.1 − 48.7i)16-s + (−34.4 + 59.6i)17-s + (−141. + 81.9i)19-s + 200.·20-s + 263.·22-s + (81.3 − 46.9i)23-s + ⋯
L(s)  = 1  + (−1.48 + 0.860i)2-s + (0.979 − 1.69i)4-s + (0.570 + 0.988i)5-s + (0.137 + 0.990i)7-s + 1.64i·8-s + (−1.70 − 0.981i)10-s + (−1.28 − 0.741i)11-s + 0.188i·13-s + (−1.05 − 1.35i)14-s + (−0.439 − 0.760i)16-s + (−0.491 + 0.851i)17-s + (−1.71 + 0.989i)19-s + 2.23·20-s + 2.55·22-s + (0.737 − 0.425i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.986 - 0.166i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.986 - 0.166i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63\)    =    \(3^{2} \cdot 7\)
Sign: $-0.986 - 0.166i$
Motivic weight: \(3\)
Character: $\chi_{63} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 63,\ (\ :3/2),\ -0.986 - 0.166i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.0436034 + 0.519598i\)
\(L(\frac12)\) \(\approx\) \(0.0436034 + 0.519598i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + (-2.53 - 18.3i)T \)
good2 \( 1 + (4.21 - 2.43i)T + (4 - 6.92i)T^{2} \)
5 \( 1 + (-6.38 - 11.0i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (46.8 + 27.0i)T + (665.5 + 1.15e3i)T^{2} \)
13 \( 1 - 8.85iT - 2.19e3T^{2} \)
17 \( 1 + (34.4 - 59.6i)T + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (141. - 81.9i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (-81.3 + 46.9i)T + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 - 119. iT - 2.43e4T^{2} \)
31 \( 1 + (-85.6 - 49.4i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (47.0 + 81.5i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 - 259.T + 6.89e4T^{2} \)
43 \( 1 - 5.01T + 7.95e4T^{2} \)
47 \( 1 + (-28.6 - 49.6i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (-407. - 235. i)T + (7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (112. - 195. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (-370. + 213. i)T + (1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (81.9 - 141. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 - 79.8iT - 3.57e5T^{2} \)
73 \( 1 + (-666. - 384. i)T + (1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (267. + 463. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 - 438.T + 5.71e5T^{2} \)
89 \( 1 + (-12.8 - 22.2i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 - 1.38e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.17935013043170345317982731104, −14.47939182931000055967575090263, −12.80794758880535556082445851407, −10.82289276232096370019334097340, −10.40908539816289060554350280605, −8.902204183870537655186271756957, −8.121491496787669222158176474888, −6.60542105266445108436850495526, −5.76901447786719381863348568346, −2.32335623688397647169209057820, 0.55163673812741434068905960815, 2.30128925902671239552605327053, 4.76965275029684029995942088502, 7.17913494228172865148648129402, 8.339159010389600737074253395755, 9.411938691065426556031642710385, 10.33899323602411772075569016999, 11.24257613284277506417899994034, 12.75726743123957140173543626361, 13.39396503301620769708473180575

Graph of the $Z$-function along the critical line