L(s) = 1 | + (1.96 + 3.40i)2-s + (1.35 + 5.01i)3-s + (−3.73 + 6.47i)4-s + (1.21 − 2.10i)5-s + (−14.4 + 14.4i)6-s + (3.5 + 6.06i)7-s + 2.05·8-s + (−23.3 + 13.5i)9-s + 9.56·10-s + (−21.0 − 36.5i)11-s + (−37.5 − 9.98i)12-s + (19.7 − 34.2i)13-s + (−13.7 + 23.8i)14-s + (12.2 + 3.24i)15-s + (33.9 + 58.8i)16-s − 2.07·17-s + ⋯ |
L(s) = 1 | + (0.695 + 1.20i)2-s + (0.260 + 0.965i)3-s + (−0.467 + 0.809i)4-s + (0.108 − 0.188i)5-s + (−0.981 + 0.985i)6-s + (0.188 + 0.327i)7-s + 0.0908·8-s + (−0.864 + 0.503i)9-s + 0.302·10-s + (−0.577 − 1.00i)11-s + (−0.903 − 0.240i)12-s + (0.422 − 0.731i)13-s + (−0.262 + 0.455i)14-s + (0.210 + 0.0559i)15-s + (0.530 + 0.918i)16-s − 0.0296·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.645 - 0.763i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.645 - 0.763i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.921949 + 1.98659i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.921949 + 1.98659i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.35 - 5.01i)T \) |
| 7 | \( 1 + (-3.5 - 6.06i)T \) |
good | 2 | \( 1 + (-1.96 - 3.40i)T + (-4 + 6.92i)T^{2} \) |
| 5 | \( 1 + (-1.21 + 2.10i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (21.0 + 36.5i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-19.7 + 34.2i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + 2.07T + 4.91e3T^{2} \) |
| 19 | \( 1 - 96.1T + 6.85e3T^{2} \) |
| 23 | \( 1 + (36.8 - 63.8i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (9.60 + 16.6i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-119. + 207. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + 144.T + 5.06e4T^{2} \) |
| 41 | \( 1 + (-36.1 + 62.5i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (240. + 416. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (147. + 255. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + 627.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (74.8 - 129. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-315. - 546. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (2.02 - 3.50i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 798.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 444.T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-287. - 498. i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (645. + 1.11e3i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 750.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (209. + 363. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.12455060735536216620841055418, −13.93714222242288141104526336229, −13.28567523055634751552037887026, −11.44189433514867506356987495250, −10.22236420588122233638198079703, −8.722393971435654499743446142510, −7.72698883461432979540651918748, −5.82075232505553734875261904735, −5.12950237626182207711121466011, −3.45121627763063097762332086733,
1.57228710194750973228350208005, 3.00260165427286123950953129186, 4.76330297943681488835286379363, 6.72711801267626040141738971054, 8.000618949691579433769865046216, 9.761855949980013993340333798296, 11.00443418603184938114532942087, 12.04637337460340062231830588914, 12.79799601668443518099182291297, 13.84538192132800832361311650073