Properties

Degree $2$
Conductor $63$
Sign $0.699 + 0.714i$
Motivic weight $3$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.799 + 1.38i)2-s + (2.72 − 4.71i)4-s + (−9.14 − 15.8i)5-s + (12.3 − 13.7i)7-s + 21.4·8-s + (14.6 − 25.3i)10-s + (−30.6 + 53.0i)11-s + 32.4·13-s + (28.9 + 6.15i)14-s + (−4.61 − 7.99i)16-s + (40.6 − 70.4i)17-s + (10.4 + 18.1i)19-s − 99.6·20-s − 97.9·22-s + (16.8 + 29.2i)23-s + ⋯
L(s)  = 1  + (0.282 + 0.489i)2-s + (0.340 − 0.589i)4-s + (−0.818 − 1.41i)5-s + (0.669 − 0.743i)7-s + 0.949·8-s + (0.462 − 0.800i)10-s + (−0.839 + 1.45i)11-s + 0.692·13-s + (0.552 + 0.117i)14-s + (−0.0721 − 0.124i)16-s + (0.580 − 1.00i)17-s + (0.126 + 0.218i)19-s − 1.11·20-s − 0.948·22-s + (0.152 + 0.264i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.699 + 0.714i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.699 + 0.714i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63\)    =    \(3^{2} \cdot 7\)
Sign: $0.699 + 0.714i$
Motivic weight: \(3\)
Character: $\chi_{63} (46, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 63,\ (\ :3/2),\ 0.699 + 0.714i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.52415 - 0.641179i\)
\(L(\frac12)\) \(\approx\) \(1.52415 - 0.641179i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
7 \( 1 + (-12.3 + 13.7i)T \)
good2 \( 1 + (-0.799 - 1.38i)T + (-4 + 6.92i)T^{2} \)
5 \( 1 + (9.14 + 15.8i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (30.6 - 53.0i)T + (-665.5 - 1.15e3i)T^{2} \)
13 \( 1 - 32.4T + 2.19e3T^{2} \)
17 \( 1 + (-40.6 + 70.4i)T + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (-10.4 - 18.1i)T + (-3.42e3 + 5.94e3i)T^{2} \)
23 \( 1 + (-16.8 - 29.2i)T + (-6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 - 52.0T + 2.43e4T^{2} \)
31 \( 1 + (96.9 - 167. i)T + (-1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + (-133. - 231. i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 - 203.T + 6.89e4T^{2} \)
43 \( 1 + 21.9T + 7.95e4T^{2} \)
47 \( 1 + (-123. - 214. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (70.4 - 121. i)T + (-7.44e4 - 1.28e5i)T^{2} \)
59 \( 1 + (-110. + 191. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (326. + 565. i)T + (-1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (302. - 523. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 - 716.T + 3.57e5T^{2} \)
73 \( 1 + (194. - 336. i)T + (-1.94e5 - 3.36e5i)T^{2} \)
79 \( 1 + (-144. - 250. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + 115.T + 5.71e5T^{2} \)
89 \( 1 + (469. + 813. i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 - 120.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.44078250604537856924825179704, −13.29848891665039175035309752426, −12.18869484561894244990847728079, −10.98703853739417953202192976575, −9.701403059837072649190284524031, −8.052523775149134380765108604033, −7.23854072096659016151503191255, −5.21242257532195816276155255538, −4.47591753034872195676139374521, −1.22070740853299530561832500641, 2.66407687070997829137026273793, 3.76008857671432544824702939226, 5.97981765506655478649403186545, 7.59968290805157284960289492304, 8.388185531406230104921776057124, 10.82803555291257745227400109362, 11.04174198922576574873960070405, 12.12988653190909636311152908429, 13.43541134373832025183349613033, 14.62733711023559678408989206280

Graph of the $Z$-function along the critical line