# Properties

 Degree $2$ Conductor $63$ Sign $-0.502 + 0.864i$ Motivic weight $3$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (−2.02 + 3.51i)2-s + (−4.22 − 7.31i)4-s + (−4.96 + 8.59i)5-s + (−15.3 − 10.2i)7-s + 1.80·8-s + (−20.1 − 34.8i)10-s + (−6.76 − 11.7i)11-s + 18.5·13-s + (67.3 − 33.1i)14-s + (30.1 − 52.1i)16-s + (−46.8 − 81.1i)17-s + (−65.9 + 114. i)19-s + 83.7·20-s + 54.9·22-s + (−99.1 + 171. i)23-s + ⋯
 L(s)  = 1 + (−0.716 + 1.24i)2-s + (−0.527 − 0.914i)4-s + (−0.443 + 0.768i)5-s + (−0.831 − 0.556i)7-s + 0.0799·8-s + (−0.636 − 1.10i)10-s + (−0.185 − 0.321i)11-s + 0.395·13-s + (1.28 − 0.633i)14-s + (0.470 − 0.815i)16-s + (−0.668 − 1.15i)17-s + (−0.796 + 1.37i)19-s + 0.936·20-s + 0.532·22-s + (−0.898 + 1.55i)23-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.502 + 0.864i)\, \overline{\Lambda}(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.502 + 0.864i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$63$$    =    $$3^{2} \cdot 7$$ Sign: $-0.502 + 0.864i$ Motivic weight: $$3$$ Character: $\chi_{63} (37, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 63,\ (\ :3/2),\ -0.502 + 0.864i)$$

## Particular Values

 $$L(2)$$ $$\approx$$ $$0.121917 - 0.211830i$$ $$L(\frac12)$$ $$\approx$$ $$0.121917 - 0.211830i$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1$$
7 $$1 + (15.3 + 10.2i)T$$
good2 $$1 + (2.02 - 3.51i)T + (-4 - 6.92i)T^{2}$$
5 $$1 + (4.96 - 8.59i)T + (-62.5 - 108. i)T^{2}$$
11 $$1 + (6.76 + 11.7i)T + (-665.5 + 1.15e3i)T^{2}$$
13 $$1 - 18.5T + 2.19e3T^{2}$$
17 $$1 + (46.8 + 81.1i)T + (-2.45e3 + 4.25e3i)T^{2}$$
19 $$1 + (65.9 - 114. i)T + (-3.42e3 - 5.94e3i)T^{2}$$
23 $$1 + (99.1 - 171. i)T + (-6.08e3 - 1.05e4i)T^{2}$$
29 $$1 + 188.T + 2.43e4T^{2}$$
31 $$1 + (-41.9 - 72.6i)T + (-1.48e4 + 2.57e4i)T^{2}$$
37 $$1 + (40.0 - 69.4i)T + (-2.53e4 - 4.38e4i)T^{2}$$
41 $$1 - 385.T + 6.89e4T^{2}$$
43 $$1 + 397.T + 7.95e4T^{2}$$
47 $$1 + (-136. + 235. i)T + (-5.19e4 - 8.99e4i)T^{2}$$
53 $$1 + (18.4 + 32.0i)T + (-7.44e4 + 1.28e5i)T^{2}$$
59 $$1 + (-197. - 342. i)T + (-1.02e5 + 1.77e5i)T^{2}$$
61 $$1 + (6.73 - 11.6i)T + (-1.13e5 - 1.96e5i)T^{2}$$
67 $$1 + (170. + 294. i)T + (-1.50e5 + 2.60e5i)T^{2}$$
71 $$1 - 211.T + 3.57e5T^{2}$$
73 $$1 + (243. + 420. i)T + (-1.94e5 + 3.36e5i)T^{2}$$
79 $$1 + (146. - 254. i)T + (-2.46e5 - 4.26e5i)T^{2}$$
83 $$1 + 889.T + 5.71e5T^{2}$$
89 $$1 + (-572. + 991. i)T + (-3.52e5 - 6.10e5i)T^{2}$$
97 $$1 - 1.38e3T + 9.12e5T^{2}$$
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$