# Properties

 Degree $2$ Conductor $63$ Sign $0.701 - 0.712i$ Motivic weight $3$ Primitive yes Self-dual no Analytic rank $0$

# Related objects

## Dirichlet series

 L(s)  = 1 + (1 + 1.73i)2-s + (2.00 − 3.46i)4-s + (3.5 + 6.06i)5-s + (14 + 12.1i)7-s + 24·8-s + (−7 + 12.1i)10-s + (−2.5 + 4.33i)11-s − 14·13-s + (−7 + 36.3i)14-s + (8.00 + 13.8i)16-s + (−10.5 + 18.1i)17-s + (−24.5 − 42.4i)19-s + 28·20-s − 10·22-s + (−79.5 − 137. i)23-s + ⋯
 L(s)  = 1 + (0.353 + 0.612i)2-s + (0.250 − 0.433i)4-s + (0.313 + 0.542i)5-s + (0.755 + 0.654i)7-s + 1.06·8-s + (−0.221 + 0.383i)10-s + (−0.0685 + 0.118i)11-s − 0.298·13-s + (−0.133 + 0.694i)14-s + (0.125 + 0.216i)16-s + (−0.149 + 0.259i)17-s + (−0.295 − 0.512i)19-s + 0.313·20-s − 0.0969·22-s + (−0.720 − 1.24i)23-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(4-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}

## Invariants

 Degree: $$2$$ Conductor: $$63$$    =    $$3^{2} \cdot 7$$ Sign: $0.701 - 0.712i$ Motivic weight: $$3$$ Character: $\chi_{63} (46, \cdot )$ Primitive: yes Self-dual: no Analytic rank: $$0$$ Selberg data: $$(2,\ 63,\ (\ :3/2),\ 0.701 - 0.712i)$$

## Particular Values

 $$L(2)$$ $$\approx$$ $$1.84467 + 0.773070i$$ $$L(\frac12)$$ $$\approx$$ $$1.84467 + 0.773070i$$ $$L(\frac{5}{2})$$ not available $$L(1)$$ not available

## Euler product

$$L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}$$
$p$$F_p(T)$
bad3 $$1$$
7 $$1 + (-14 - 12.1i)T$$
good2 $$1 + (-1 - 1.73i)T + (-4 + 6.92i)T^{2}$$
5 $$1 + (-3.5 - 6.06i)T + (-62.5 + 108. i)T^{2}$$
11 $$1 + (2.5 - 4.33i)T + (-665.5 - 1.15e3i)T^{2}$$
13 $$1 + 14T + 2.19e3T^{2}$$
17 $$1 + (10.5 - 18.1i)T + (-2.45e3 - 4.25e3i)T^{2}$$
19 $$1 + (24.5 + 42.4i)T + (-3.42e3 + 5.94e3i)T^{2}$$
23 $$1 + (79.5 + 137. i)T + (-6.08e3 + 1.05e4i)T^{2}$$
29 $$1 + 58T + 2.43e4T^{2}$$
31 $$1 + (73.5 - 127. i)T + (-1.48e4 - 2.57e4i)T^{2}$$
37 $$1 + (109.5 + 189. i)T + (-2.53e4 + 4.38e4i)T^{2}$$
41 $$1 + 350T + 6.89e4T^{2}$$
43 $$1 + 124T + 7.95e4T^{2}$$
47 $$1 + (-262.5 - 454. i)T + (-5.19e4 + 8.99e4i)T^{2}$$
53 $$1 + (-151.5 + 262. i)T + (-7.44e4 - 1.28e5i)T^{2}$$
59 $$1 + (52.5 - 90.9i)T + (-1.02e5 - 1.77e5i)T^{2}$$
61 $$1 + (-206.5 - 357. i)T + (-1.13e5 + 1.96e5i)T^{2}$$
67 $$1 + (207.5 - 359. i)T + (-1.50e5 - 2.60e5i)T^{2}$$
71 $$1 - 432T + 3.57e5T^{2}$$
73 $$1 + (-556.5 + 963. i)T + (-1.94e5 - 3.36e5i)T^{2}$$
79 $$1 + (-51.5 - 89.2i)T + (-2.46e5 + 4.26e5i)T^{2}$$
83 $$1 + 1.09e3T + 5.71e5T^{2}$$
89 $$1 + (164.5 + 284. i)T + (-3.52e5 + 6.10e5i)T^{2}$$
97 $$1 + 882T + 9.12e5T^{2}$$
show less
$$L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}$$

## Imaginary part of the first few zeros on the critical line

−14.64814336432912702734701116954, −13.95583680330313333603492418147, −12.46219209517447284072293189274, −11.09246777481280212376019510064, −10.19612924594517746674523002482, −8.558030329400515127888650673747, −7.11026931262591983094923791019, −5.98008470630566320886347902001, −4.73313483146484211874996179363, −2.17132250947332270388151761296, 1.75382809136259760563347454696, 3.77791423809809465049800301767, 5.17525991275837360078382387211, 7.21741002012368570943842159628, 8.327961980626200401606484670613, 9.959124515911440903195033045197, 11.15394390449886121614054168901, 12.03613992434757571030065168987, 13.21492657460429433862257146774, 13.92538997931754736536572744171