Properties

Label 2-63-9.7-c1-0-4
Degree $2$
Conductor $63$
Sign $0.5 + 0.866i$
Analytic cond. $0.503057$
Root an. cond. $0.709265$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.439 − 0.761i)2-s + (−0.592 − 1.62i)3-s + (0.613 + 1.06i)4-s + (−0.673 − 1.16i)5-s + (−1.50 − 0.264i)6-s + (−0.5 + 0.866i)7-s + 2.83·8-s + (−2.29 + 1.92i)9-s − 1.18·10-s + (−0.826 + 1.43i)11-s + (1.36 − 1.62i)12-s + (1.68 + 2.91i)13-s + (0.439 + 0.761i)14-s + (−1.5 + 1.78i)15-s + (0.0209 − 0.0362i)16-s + 0.467·17-s + ⋯
L(s)  = 1  + (0.310 − 0.538i)2-s + (−0.342 − 0.939i)3-s + (0.306 + 0.531i)4-s + (−0.301 − 0.521i)5-s + (−0.612 − 0.107i)6-s + (−0.188 + 0.327i)7-s + 1.00·8-s + (−0.766 + 0.642i)9-s − 0.374·10-s + (−0.249 + 0.431i)11-s + (0.394 − 0.469i)12-s + (0.467 + 0.809i)13-s + (0.117 + 0.203i)14-s + (−0.387 + 0.461i)15-s + (0.00523 − 0.00906i)16-s + 0.113·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.5 + 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 63 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.5 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(63\)    =    \(3^{2} \cdot 7\)
Sign: $0.5 + 0.866i$
Analytic conductor: \(0.503057\)
Root analytic conductor: \(0.709265\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{63} (43, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 63,\ (\ :1/2),\ 0.5 + 0.866i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.827891 - 0.477983i\)
\(L(\frac12)\) \(\approx\) \(0.827891 - 0.477983i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.592 + 1.62i)T \)
7 \( 1 + (0.5 - 0.866i)T \)
good2 \( 1 + (-0.439 + 0.761i)T + (-1 - 1.73i)T^{2} \)
5 \( 1 + (0.673 + 1.16i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (0.826 - 1.43i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (-1.68 - 2.91i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 - 0.467T + 17T^{2} \)
19 \( 1 + 3.22T + 19T^{2} \)
23 \( 1 + (4.47 + 7.74i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (3.13 - 5.42i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (4.61 + 7.99i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 - 9.23T + 37T^{2} \)
41 \( 1 + (1.70 + 2.95i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-2.20 + 3.82i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (4.67 - 8.10i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + 0.573T + 53T^{2} \)
59 \( 1 + (-5.19 - 9.00i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (3.81 - 6.61i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (0.298 + 0.516i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 0.554T + 71T^{2} \)
73 \( 1 - 2.04T + 73T^{2} \)
79 \( 1 + (-1.20 + 2.08i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-7.52 + 13.0i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 - 9.08T + 89T^{2} \)
97 \( 1 + (-0.949 + 1.64i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53890322264084538075665621953, −13.17205852299839898030931942495, −12.55557341088346767704213305722, −11.76536250285470285782761414251, −10.70721609043959004753804145904, −8.715343504268629260718281972787, −7.60839937524694782447686257483, −6.28557925106747560123555814194, −4.36779083902442023645922207229, −2.24264745629382718681996836648, 3.62604112704749211382998443445, 5.31249989591744716596411198295, 6.36329467556857145325730772435, 7.87429447557240343298700800794, 9.694855817685283486170278894393, 10.71128869745285764812135873394, 11.38604038284689301864773113619, 13.24689672146302584939862304944, 14.45458388599629248712500096631, 15.27442736763316865236630525117

Graph of the $Z$-function along the critical line