Properties

Label 8-624e4-1.1-c1e4-0-11
Degree $8$
Conductor $151613669376$
Sign $1$
Analytic cond. $616.377$
Root an. cond. $2.23218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s − 3·9-s − 2·19-s − 22·31-s + 22·37-s + 42·43-s − 13·49-s + 6·63-s − 32·67-s + 14·73-s + 10·97-s − 34·109-s + 127-s + 131-s + 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 23·169-s + 6·171-s + 173-s + 179-s + 181-s + ⋯
L(s)  = 1  − 0.755·7-s − 9-s − 0.458·19-s − 3.95·31-s + 3.61·37-s + 6.40·43-s − 1.85·49-s + 0.755·63-s − 3.90·67-s + 1.63·73-s + 1.01·97-s − 3.25·109-s + 0.0887·127-s + 0.0873·131-s + 0.346·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 1.76·169-s + 0.458·171-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(616.377\)
Root analytic conductor: \(2.23218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.355034381\)
\(L(\frac12)\) \(\approx\) \(1.355034381\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 23 T^{2} + p^{2} T^{4} \)
good5$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
7$C_2$$\times$$C_2^2$ \( ( 1 + T + p T^{2} )^{2}( 1 + 2 T^{2} + p^{2} T^{4} ) \)
11$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$$\times$$C_2^2$ \( ( 1 + T + p T^{2} )^{2}( 1 + 11 T^{2} + p^{2} T^{4} ) \)
23$C_2^2$ \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$$\times$$C_2^2$ \( ( 1 + 11 T + p T^{2} )^{2}( 1 + 59 T^{2} + p^{2} T^{4} ) \)
37$C_2$$\times$$C_2^2$ \( ( 1 - 11 T + p T^{2} )^{2}( 1 - 73 T^{2} + p^{2} T^{4} ) \)
41$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
43$C_2$ \( ( 1 - 13 T + p T^{2} )^{2}( 1 - 8 T + p T^{2} )^{2} \)
47$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - p T^{2} )^{4} \)
59$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
61$C_2^2$$\times$$C_2^2$ \( ( 1 + 47 T^{2} + p^{2} T^{4} )( 1 + 74 T^{2} + p^{2} T^{4} ) \)
67$C_2$$\times$$C_2^2$ \( ( 1 + 16 T + p T^{2} )^{2}( 1 - 13 T^{2} + p^{2} T^{4} ) \)
71$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
73$C_2$$\times$$C_2^2$ \( ( 1 - 7 T + p T^{2} )^{2}( 1 - 97 T^{2} + p^{2} T^{4} ) \)
79$C_2^2$ \( ( 1 + 131 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
89$C_2^3$ \( 1 - p^{2} T^{4} + p^{4} T^{8} \)
97$C_2$$\times$$C_2^2$ \( ( 1 - 5 T + p T^{2} )^{2}( 1 + 2 T^{2} + p^{2} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.69102523517801316541474215193, −7.53955333426378639849482794847, −7.14894865048505321178731596140, −7.01463811978757149918190596607, −6.76771312757655289382450785896, −6.28446151216042068908027111106, −6.10876017643576487075067734114, −5.96314822524090783097127425888, −5.73089768310786501243845979791, −5.62707708604292567939862738929, −5.45461775003146918560937466510, −4.95284056954874525983196800956, −4.48273828754009542052925205825, −4.35589099404687414300939166953, −4.27416567008580165361832457270, −3.75781921212278492290750664748, −3.74001532546052356122000976691, −3.07908729957842005481963600489, −2.87968410847943133397022746025, −2.84601169693423664069933231679, −2.18071416852696342512453878137, −2.15898954704689304545386044240, −1.54553894668045087705020238489, −0.904864748089091239836475274536, −0.40656572516366267230471561882, 0.40656572516366267230471561882, 0.904864748089091239836475274536, 1.54553894668045087705020238489, 2.15898954704689304545386044240, 2.18071416852696342512453878137, 2.84601169693423664069933231679, 2.87968410847943133397022746025, 3.07908729957842005481963600489, 3.74001532546052356122000976691, 3.75781921212278492290750664748, 4.27416567008580165361832457270, 4.35589099404687414300939166953, 4.48273828754009542052925205825, 4.95284056954874525983196800956, 5.45461775003146918560937466510, 5.62707708604292567939862738929, 5.73089768310786501243845979791, 5.96314822524090783097127425888, 6.10876017643576487075067734114, 6.28446151216042068908027111106, 6.76771312757655289382450785896, 7.01463811978757149918190596607, 7.14894865048505321178731596140, 7.53955333426378639849482794847, 7.69102523517801316541474215193

Graph of the $Z$-function along the critical line