Properties

Label 6-6160e3-1.1-c1e3-0-5
Degree $6$
Conductor $233744896000$
Sign $1$
Analytic cond. $119007.$
Root an. cond. $7.01340$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 3·5-s + 3·7-s + 9-s − 3·11-s + 2·13-s − 6·15-s + 2·17-s + 6·19-s − 6·21-s − 10·23-s + 6·25-s + 12·31-s + 6·33-s + 9·35-s + 4·37-s − 4·39-s + 4·41-s − 8·43-s + 3·45-s + 6·49-s − 4·51-s + 12·53-s − 9·55-s − 12·57-s + 4·59-s − 6·61-s + ⋯
L(s)  = 1  − 1.15·3-s + 1.34·5-s + 1.13·7-s + 1/3·9-s − 0.904·11-s + 0.554·13-s − 1.54·15-s + 0.485·17-s + 1.37·19-s − 1.30·21-s − 2.08·23-s + 6/5·25-s + 2.15·31-s + 1.04·33-s + 1.52·35-s + 0.657·37-s − 0.640·39-s + 0.624·41-s − 1.21·43-s + 0.447·45-s + 6/7·49-s − 0.560·51-s + 1.64·53-s − 1.21·55-s − 1.58·57-s + 0.520·59-s − 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{3} \cdot 7^{3} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 5^{3} \cdot 7^{3} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(2^{12} \cdot 5^{3} \cdot 7^{3} \cdot 11^{3}\)
Sign: $1$
Analytic conductor: \(119007.\)
Root analytic conductor: \(7.01340\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((6,\ 2^{12} \cdot 5^{3} \cdot 7^{3} \cdot 11^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(5.463480510\)
\(L(\frac12)\) \(\approx\) \(5.463480510\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - T )^{3} \)
7$C_1$ \( ( 1 - T )^{3} \)
11$C_1$ \( ( 1 + T )^{3} \)
good3$S_4\times C_2$ \( 1 + 2 T + p T^{2} + 4 T^{3} + p^{2} T^{4} + 2 p^{2} T^{5} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 - 2 T + 23 T^{2} - 36 T^{3} + 23 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 - 2 T + 23 T^{2} - 76 T^{3} + 23 p T^{4} - 2 p^{2} T^{5} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 - 6 T + 11 T^{2} + 4 T^{3} + 11 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 + 10 T + 95 T^{2} + 476 T^{3} + 95 p T^{4} + 10 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 + 21 T^{2} - 92 T^{3} + 21 p T^{4} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 - 12 T + 113 T^{2} - 712 T^{3} + 113 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 - 4 T + 109 T^{2} - 292 T^{3} + 109 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 - 4 T + 33 T^{2} - 12 p T^{3} + 33 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 + 8 T + 21 T^{2} - 160 T^{3} + 21 p T^{4} + 8 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 29 T^{2} + 128 T^{3} + 29 p T^{4} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 - 12 T + 141 T^{2} - 980 T^{3} + 141 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 - 4 T + 113 T^{2} - 344 T^{3} + 113 p T^{4} - 4 p^{2} T^{5} + p^{3} T^{6} \)
61$S_4\times C_2$ \( 1 + 6 T + 83 T^{2} + 388 T^{3} + 83 p T^{4} + 6 p^{2} T^{5} + p^{3} T^{6} \)
67$S_4\times C_2$ \( 1 + 4 T + 89 T^{2} + 600 T^{3} + 89 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 - 28 T + 413 T^{2} - 4040 T^{3} + 413 p T^{4} - 28 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 + 14 T + 255 T^{2} + 2036 T^{3} + 255 p T^{4} + 14 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 + 18 T + 287 T^{2} + 2588 T^{3} + 287 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 - 8 T + 241 T^{2} - 1296 T^{3} + 241 p T^{4} - 8 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 - 18 T + 239 T^{2} - 1996 T^{3} + 239 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 + 4 T + 137 T^{2} + 1092 T^{3} + 137 p T^{4} + 4 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.26765949487601721034436396335, −6.69907531909780803573580330650, −6.54955471571434654483315538366, −6.38811394097248376949008172520, −5.94028866958454666283743909286, −5.93841329787691741526390475697, −5.77760234751686823992690139057, −5.40420467309929948111726515515, −5.24706741901246797976673543355, −5.14887473730234402834845346183, −4.79629153123379106836435646031, −4.46695675645097904113592165854, −4.36009587098081059962427771667, −3.92373527899100765570343554066, −3.76825815807959980425604170294, −3.28820645138040150853821611501, −2.94534039305637134397926774716, −2.64505691466926336890008562081, −2.59884627036991048519611456286, −1.94506602457897269567454038108, −1.82423206261066086749549891403, −1.59951909010789060683837956891, −1.06477392838051619790040730069, −0.65214126911301154548990563558, −0.56185200369579379958390269150, 0.56185200369579379958390269150, 0.65214126911301154548990563558, 1.06477392838051619790040730069, 1.59951909010789060683837956891, 1.82423206261066086749549891403, 1.94506602457897269567454038108, 2.59884627036991048519611456286, 2.64505691466926336890008562081, 2.94534039305637134397926774716, 3.28820645138040150853821611501, 3.76825815807959980425604170294, 3.92373527899100765570343554066, 4.36009587098081059962427771667, 4.46695675645097904113592165854, 4.79629153123379106836435646031, 5.14887473730234402834845346183, 5.24706741901246797976673543355, 5.40420467309929948111726515515, 5.77760234751686823992690139057, 5.93841329787691741526390475697, 5.94028866958454666283743909286, 6.38811394097248376949008172520, 6.54955471571434654483315538366, 6.69907531909780803573580330650, 7.26765949487601721034436396335

Graph of the $Z$-function along the critical line