Properties

Label 4-6075e2-1.1-c1e2-0-3
Degree $4$
Conductor $36905625$
Sign $1$
Analytic cond. $2353.13$
Root an. cond. $6.96484$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 2·7-s − 10·13-s − 3·16-s − 2·19-s − 2·28-s + 10·31-s + 2·37-s + 2·43-s − 11·49-s + 10·52-s + 4·61-s + 7·64-s − 16·67-s − 4·73-s + 2·76-s − 2·79-s − 20·91-s − 34·97-s − 16·103-s + 34·109-s − 6·112-s − 10·121-s − 10·124-s + 127-s + 131-s − 4·133-s + ⋯
L(s)  = 1  − 1/2·4-s + 0.755·7-s − 2.77·13-s − 3/4·16-s − 0.458·19-s − 0.377·28-s + 1.79·31-s + 0.328·37-s + 0.304·43-s − 1.57·49-s + 1.38·52-s + 0.512·61-s + 7/8·64-s − 1.95·67-s − 0.468·73-s + 0.229·76-s − 0.225·79-s − 2.09·91-s − 3.45·97-s − 1.57·103-s + 3.25·109-s − 0.566·112-s − 0.909·121-s − 0.898·124-s + 0.0887·127-s + 0.0873·131-s − 0.346·133-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 36905625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 36905625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(36905625\)    =    \(3^{10} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(2353.13\)
Root analytic conductor: \(6.96484\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 36905625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
7$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
11$C_2^2$ \( 1 + 10 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{2} \)
19$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 46 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
43$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
47$C_2^2$ \( 1 + 82 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
59$C_2^2$ \( 1 + 106 T^{2} + p^{2} T^{4} \)
61$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
71$C_2^2$ \( 1 + 34 T^{2} + p^{2} T^{4} \)
73$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 + 118 T^{2} + p^{2} T^{4} \)
89$C_2^2$ \( 1 + 70 T^{2} + p^{2} T^{4} \)
97$C_2$ \( ( 1 + 17 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.73113150341185910820842660006, −7.63951183173300067446920335433, −7.35820863115049951375983169541, −6.67262370490231006217841087430, −6.64751101991616912042654855359, −6.26477624188867309715648966133, −5.42952938180779524455698201945, −5.42645229258182234815286880670, −4.93224326096937188053609094765, −4.59268889916187232916769130579, −4.34051215050290813326163622817, −4.17554336273533188573557838776, −3.35607553124950933923278322217, −2.81281709134313959588118517057, −2.57464864174709277275780744543, −2.21764780567849678940369277775, −1.60890610249545408237814534707, −1.05463291020775159793841319825, 0, 0, 1.05463291020775159793841319825, 1.60890610249545408237814534707, 2.21764780567849678940369277775, 2.57464864174709277275780744543, 2.81281709134313959588118517057, 3.35607553124950933923278322217, 4.17554336273533188573557838776, 4.34051215050290813326163622817, 4.59268889916187232916769130579, 4.93224326096937188053609094765, 5.42645229258182234815286880670, 5.42952938180779524455698201945, 6.26477624188867309715648966133, 6.64751101991616912042654855359, 6.67262370490231006217841087430, 7.35820863115049951375983169541, 7.63951183173300067446920335433, 7.73113150341185910820842660006

Graph of the $Z$-function along the critical line