Properties

Label 2-6069-1.1-c1-0-46
Degree $2$
Conductor $6069$
Sign $1$
Analytic cond. $48.4612$
Root an. cond. $6.96140$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s − 5-s − 7-s + 9-s + 5·11-s − 2·12-s − 5·13-s − 15-s + 4·16-s − 5·19-s + 2·20-s − 21-s + 23-s − 4·25-s + 27-s + 2·28-s + 6·29-s + 6·31-s + 5·33-s + 35-s − 2·36-s − 4·37-s − 5·39-s − 7·41-s − 7·43-s − 10·44-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 0.447·5-s − 0.377·7-s + 1/3·9-s + 1.50·11-s − 0.577·12-s − 1.38·13-s − 0.258·15-s + 16-s − 1.14·19-s + 0.447·20-s − 0.218·21-s + 0.208·23-s − 4/5·25-s + 0.192·27-s + 0.377·28-s + 1.11·29-s + 1.07·31-s + 0.870·33-s + 0.169·35-s − 1/3·36-s − 0.657·37-s − 0.800·39-s − 1.09·41-s − 1.06·43-s − 1.50·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6069 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6069\)    =    \(3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(48.4612\)
Root analytic conductor: \(6.96140\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6069,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.349285973\)
\(L(\frac12)\) \(\approx\) \(1.349285973\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + 5 T + p T^{2} \) 1.13.f
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.400305546400304934198540436606, −7.35343306002931313684207034984, −6.80157352545949033063510606567, −5.99836690419139153065721702310, −4.91133038693438092528484452365, −4.34359280024281907660931435832, −3.76877302669386175662975373167, −2.94513597171598774414644542529, −1.84939129269636245262064680737, −0.59424854754834913087020398484, 0.59424854754834913087020398484, 1.84939129269636245262064680737, 2.94513597171598774414644542529, 3.76877302669386175662975373167, 4.34359280024281907660931435832, 4.91133038693438092528484452365, 5.99836690419139153065721702310, 6.80157352545949033063510606567, 7.35343306002931313684207034984, 8.400305546400304934198540436606

Graph of the $Z$-function along the critical line