Properties

Label 4-605e2-1.1-c1e2-0-5
Degree $4$
Conductor $366025$
Sign $1$
Analytic cond. $23.3380$
Root an. cond. $2.19794$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4-s − 2·5-s − 3·9-s + 2·12-s + 4·15-s − 3·16-s + 2·20-s + 3·25-s + 14·27-s − 16·31-s + 3·36-s − 16·37-s + 6·45-s + 18·47-s + 6·48-s − 11·49-s + 12·53-s − 24·59-s − 4·60-s + 7·64-s − 10·67-s − 24·71-s − 6·75-s + 6·80-s − 4·81-s + 6·89-s + ⋯
L(s)  = 1  − 1.15·3-s − 1/2·4-s − 0.894·5-s − 9-s + 0.577·12-s + 1.03·15-s − 3/4·16-s + 0.447·20-s + 3/5·25-s + 2.69·27-s − 2.87·31-s + 1/2·36-s − 2.63·37-s + 0.894·45-s + 2.62·47-s + 0.866·48-s − 1.57·49-s + 1.64·53-s − 3.12·59-s − 0.516·60-s + 7/8·64-s − 1.22·67-s − 2.84·71-s − 0.692·75-s + 0.670·80-s − 4/9·81-s + 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 366025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 366025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(366025\)    =    \(5^{2} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(23.3380\)
Root analytic conductor: \(2.19794\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 366025,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad5$C_1$ \( ( 1 + T )^{2} \)
11 \( 1 \)
good2$C_2^2$ \( 1 + T^{2} + p^{2} T^{4} \)
3$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
13$C_2^2$ \( 1 + 14 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 - 14 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
23$C_2$ \( ( 1 + p T^{2} )^{2} \)
29$C_2$ \( ( 1 + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
41$C_2^2$ \( 1 - 65 T^{2} + p^{2} T^{4} \)
43$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
53$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2^2$ \( 1 + 47 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 + 5 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2$ \( ( 1 + p T^{2} )^{2} \)
79$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
83$C_2^2$ \( 1 + 154 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.81667643402762384082211745565, −10.24852761452030434688937769245, −9.329926879371495179584250281570, −9.097081782258434538096454156701, −8.696146579504793606544450782183, −8.449067249733353054667681702856, −7.70065205133643917795542983375, −7.12738424913006641520490750420, −7.05225309963815263333041362939, −6.21582976908259805341697702925, −5.69161695820892943497683929412, −5.51745327455328883867742473683, −4.86760448399064938279060773931, −4.48129188551813999289632652079, −3.75162009716497306769710738140, −3.28415683071600115352785166225, −2.57845760710912345016843008396, −1.53191520661976603474827760272, 0, 0, 1.53191520661976603474827760272, 2.57845760710912345016843008396, 3.28415683071600115352785166225, 3.75162009716497306769710738140, 4.48129188551813999289632652079, 4.86760448399064938279060773931, 5.51745327455328883867742473683, 5.69161695820892943497683929412, 6.21582976908259805341697702925, 7.05225309963815263333041362939, 7.12738424913006641520490750420, 7.70065205133643917795542983375, 8.449067249733353054667681702856, 8.696146579504793606544450782183, 9.097081782258434538096454156701, 9.329926879371495179584250281570, 10.24852761452030434688937769245, 10.81667643402762384082211745565

Graph of the $Z$-function along the critical line