Properties

Degree 2
Conductor $ 2^{5} \cdot 3^{3} \cdot 7 $
Sign $-0.707 + 0.707i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 0.517i·5-s + i·7-s + 3.18·11-s − 2.64·13-s − 5.15i·17-s − 8.23i·19-s − 4.38·23-s + 4.73·25-s + 5.11i·29-s + 0.548i·31-s + 0.517·35-s − 2.37·37-s − 0.473i·41-s − 0.816i·43-s − 0.493·47-s + ⋯
L(s)  = 1  − 0.231i·5-s + 0.377i·7-s + 0.959·11-s − 0.734·13-s − 1.25i·17-s − 1.88i·19-s − 0.913·23-s + 0.946·25-s + 0.949i·29-s + 0.0985i·31-s + 0.0874·35-s − 0.391·37-s − 0.0740i·41-s − 0.124i·43-s − 0.0719·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6048\)    =    \(2^{5} \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $-0.707 + 0.707i$
motivic weight  =  \(1\)
character  :  $\chi_{6048} (2591, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 6048,\ (\ :1/2),\ -0.707 + 0.707i)$
$L(1)$  $\approx$  $0.9944687180$
$L(\frac12)$  $\approx$  $0.9944687180$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - iT \)
good5 \( 1 + 0.517iT - 5T^{2} \)
11 \( 1 - 3.18T + 11T^{2} \)
13 \( 1 + 2.64T + 13T^{2} \)
17 \( 1 + 5.15iT - 17T^{2} \)
19 \( 1 + 8.23iT - 19T^{2} \)
23 \( 1 + 4.38T + 23T^{2} \)
29 \( 1 - 5.11iT - 29T^{2} \)
31 \( 1 - 0.548iT - 31T^{2} \)
37 \( 1 + 2.37T + 37T^{2} \)
41 \( 1 + 0.473iT - 41T^{2} \)
43 \( 1 + 0.816iT - 43T^{2} \)
47 \( 1 + 0.493T + 47T^{2} \)
53 \( 1 - 0.915iT - 53T^{2} \)
59 \( 1 + 12.7T + 59T^{2} \)
61 \( 1 + 3.40T + 61T^{2} \)
67 \( 1 - 0.585iT - 67T^{2} \)
71 \( 1 + 6.95T + 71T^{2} \)
73 \( 1 - 2.41T + 73T^{2} \)
79 \( 1 - 12.5iT - 79T^{2} \)
83 \( 1 - 0.215T + 83T^{2} \)
89 \( 1 + 10.1iT - 89T^{2} \)
97 \( 1 + 7.23T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.72019980159203098999856822992, −6.98382289223105395174382575527, −6.61357422680640655246730180021, −5.54219442348284233923990384354, −4.87682790080251092763931188584, −4.34904175259200534430264135394, −3.15218985572928627068303212052, −2.56033661841727328875630194291, −1.42435812566157622128542707853, −0.25175146107464040511601135566, 1.31546352526388467386483074985, 2.06183881410531933154728467418, 3.27352221134492759489483019173, 3.95357595790656772292047541855, 4.53553035385346188765849363220, 5.67263981756652379818938962916, 6.23329967564555751451860627398, 6.83087449480036116969828314817, 7.83888344628852576035045165483, 8.075835994863670625089700509141

Graph of the $Z$-function along the critical line