Properties

Degree 2
Conductor $ 2^{5} \cdot 3^{3} \cdot 7 $
Sign $0.707 + 0.707i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 1.19i·5-s + i·7-s + 1.62·11-s − 2.09·13-s + 0.585i·17-s + 5.89i·19-s − 7.09·23-s + 3.56·25-s − 7.08i·29-s − 6.72i·31-s + 1.19·35-s + 2.17·37-s − 0.164i·41-s − 5.75i·43-s + 3.41·47-s + ⋯
L(s)  = 1  − 0.536i·5-s + 0.377i·7-s + 0.491·11-s − 0.581·13-s + 0.142i·17-s + 1.35i·19-s − 1.47·23-s + 0.712·25-s − 1.31i·29-s − 1.20i·31-s + 0.202·35-s + 0.357·37-s − 0.0256i·41-s − 0.877i·43-s + 0.498·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6048\)    =    \(2^{5} \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $0.707 + 0.707i$
motivic weight  =  \(1\)
character  :  $\chi_{6048} (2591, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 6048,\ (\ :1/2),\ 0.707 + 0.707i)$
$L(1)$  $\approx$  $1.710053417$
$L(\frac12)$  $\approx$  $1.710053417$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - iT \)
good5 \( 1 + 1.19iT - 5T^{2} \)
11 \( 1 - 1.62T + 11T^{2} \)
13 \( 1 + 2.09T + 13T^{2} \)
17 \( 1 - 0.585iT - 17T^{2} \)
19 \( 1 - 5.89iT - 19T^{2} \)
23 \( 1 + 7.09T + 23T^{2} \)
29 \( 1 + 7.08iT - 29T^{2} \)
31 \( 1 + 6.72iT - 31T^{2} \)
37 \( 1 - 2.17T + 37T^{2} \)
41 \( 1 + 0.164iT - 41T^{2} \)
43 \( 1 + 5.75iT - 43T^{2} \)
47 \( 1 - 3.41T + 47T^{2} \)
53 \( 1 + 3.29iT - 53T^{2} \)
59 \( 1 + 2.08T + 59T^{2} \)
61 \( 1 - 4.92T + 61T^{2} \)
67 \( 1 - 12.4iT - 67T^{2} \)
71 \( 1 - 11.2T + 71T^{2} \)
73 \( 1 - 3.97T + 73T^{2} \)
79 \( 1 - 0.702iT - 79T^{2} \)
83 \( 1 - 16.8T + 83T^{2} \)
89 \( 1 + 6.33iT - 89T^{2} \)
97 \( 1 + 6.58T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.080804037252855033500940072969, −7.41449131693680332616702229621, −6.40821147203551892466190969270, −5.87215414627648563819356214326, −5.18982031612449762825737517709, −4.20047067404060180860869612956, −3.77995785744651453718868694559, −2.48998799819155797493753611556, −1.80791014689722698321022390770, −0.55284156046337761778354619187, 0.849805310832086401744539908103, 2.04233273438328819867364554648, 2.94021879970568770922825661705, 3.65098217924772739535124201199, 4.63015673294278485125682146676, 5.13963987793000314383938861649, 6.26128563100539264487715267649, 6.77364953585480308868443836102, 7.33523217857380590964340523604, 8.085537773383525637565899360019

Graph of the $Z$-function along the critical line