Properties

Degree 2
Conductor $ 2^{5} \cdot 3^{3} \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2.41·5-s − 7-s + 2.41·11-s + 2.82·13-s − 2.82·17-s − 3.82·19-s + 5.24·23-s + 0.828·25-s + 2.82·29-s − 4.65·31-s + 2.41·35-s + 0.171·37-s + 2.07·41-s − 4.82·43-s + 0.343·47-s + 49-s + 4·53-s − 5.82·55-s − 3.65·59-s − 11.3·61-s − 6.82·65-s + 4.48·67-s + 5.58·71-s − 3.17·73-s − 2.41·77-s + 4.82·79-s + 10.8·83-s + ⋯
L(s)  = 1  − 1.07·5-s − 0.377·7-s + 0.727·11-s + 0.784·13-s − 0.685·17-s − 0.878·19-s + 1.09·23-s + 0.165·25-s + 0.525·29-s − 0.836·31-s + 0.408·35-s + 0.0282·37-s + 0.323·41-s − 0.736·43-s + 0.0500·47-s + 0.142·49-s + 0.549·53-s − 0.785·55-s − 0.476·59-s − 1.44·61-s − 0.846·65-s + 0.547·67-s + 0.662·71-s − 0.371·73-s − 0.275·77-s + 0.543·79-s + 1.18·83-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6048\)    =    \(2^{5} \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{6048} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 6048,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $1.276106394$
$L(\frac12)$  $\approx$  $1.276106394$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;7\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + 2.41T + 5T^{2} \)
11 \( 1 - 2.41T + 11T^{2} \)
13 \( 1 - 2.82T + 13T^{2} \)
17 \( 1 + 2.82T + 17T^{2} \)
19 \( 1 + 3.82T + 19T^{2} \)
23 \( 1 - 5.24T + 23T^{2} \)
29 \( 1 - 2.82T + 29T^{2} \)
31 \( 1 + 4.65T + 31T^{2} \)
37 \( 1 - 0.171T + 37T^{2} \)
41 \( 1 - 2.07T + 41T^{2} \)
43 \( 1 + 4.82T + 43T^{2} \)
47 \( 1 - 0.343T + 47T^{2} \)
53 \( 1 - 4T + 53T^{2} \)
59 \( 1 + 3.65T + 59T^{2} \)
61 \( 1 + 11.3T + 61T^{2} \)
67 \( 1 - 4.48T + 67T^{2} \)
71 \( 1 - 5.58T + 71T^{2} \)
73 \( 1 + 3.17T + 73T^{2} \)
79 \( 1 - 4.82T + 79T^{2} \)
83 \( 1 - 10.8T + 83T^{2} \)
89 \( 1 + 1.24T + 89T^{2} \)
97 \( 1 + 9.65T + 97T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.088178303615233497020290640247, −7.35833796135743173611486685856, −6.63633932199553747540173608425, −6.17452252461083247387039738026, −5.08333890997777209408527068602, −4.25715347616796096079096892586, −3.74020885916209061605834357685, −2.97376736223391030365707243738, −1.78577032724612582119414193948, −0.59330392068188946780710114287, 0.59330392068188946780710114287, 1.78577032724612582119414193948, 2.97376736223391030365707243738, 3.74020885916209061605834357685, 4.25715347616796096079096892586, 5.08333890997777209408527068602, 6.17452252461083247387039738026, 6.63633932199553747540173608425, 7.35833796135743173611486685856, 8.088178303615233497020290640247

Graph of the $Z$-function along the critical line