Properties

Degree 2
Conductor $ 2^{5} \cdot 3^{3} \cdot 7 $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 2·11-s + 17-s − 4·19-s + 4·23-s − 4·25-s − 8·29-s + 4·31-s + 35-s − 7·37-s − 5·41-s + 43-s + 9·47-s + 49-s + 2·53-s − 2·55-s − 3·59-s − 2·61-s − 4·67-s − 12·71-s − 16·73-s − 2·77-s − 15·79-s + 3·83-s + 85-s + 6·89-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s − 0.603·11-s + 0.242·17-s − 0.917·19-s + 0.834·23-s − 4/5·25-s − 1.48·29-s + 0.718·31-s + 0.169·35-s − 1.15·37-s − 0.780·41-s + 0.152·43-s + 1.31·47-s + 1/7·49-s + 0.274·53-s − 0.269·55-s − 0.390·59-s − 0.256·61-s − 0.488·67-s − 1.42·71-s − 1.87·73-s − 0.227·77-s − 1.68·79-s + 0.329·83-s + 0.108·85-s + 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6048\)    =    \(2^{5} \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{6048} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 6048,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( 1 - T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 - T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 + 5 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + 16 T + p T^{2} \)
79 \( 1 + 15 T + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 4 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.56591841669389549344613539460, −7.20577037524701959547829928381, −6.14047182669972384291407091622, −5.64030682883616401782196055611, −4.87613728415884360324154040714, −4.10809580582249546972829643047, −3.15770146059131870613415798389, −2.25339717367876448610919124359, −1.46289063938847208106552932535, 0, 1.46289063938847208106552932535, 2.25339717367876448610919124359, 3.15770146059131870613415798389, 4.10809580582249546972829643047, 4.87613728415884360324154040714, 5.64030682883616401782196055611, 6.14047182669972384291407091622, 7.20577037524701959547829928381, 7.56591841669389549344613539460

Graph of the $Z$-function along the critical line