Properties

Degree 2
Conductor $ 2^{5} \cdot 3^{3} \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 4·11-s + 13-s − 5·17-s − 2·19-s + 3·23-s − 5·25-s + 29-s + 9·31-s + 6·37-s + 2·41-s − 43-s − 2·47-s + 49-s − 9·53-s − 3·59-s − 2·61-s + 11·67-s + 5·71-s − 2·73-s − 4·77-s + 14·79-s + 12·83-s + 15·89-s + 91-s + 12·97-s + 6·101-s + ⋯
L(s)  = 1  + 0.377·7-s − 1.20·11-s + 0.277·13-s − 1.21·17-s − 0.458·19-s + 0.625·23-s − 25-s + 0.185·29-s + 1.61·31-s + 0.986·37-s + 0.312·41-s − 0.152·43-s − 0.291·47-s + 1/7·49-s − 1.23·53-s − 0.390·59-s − 0.256·61-s + 1.34·67-s + 0.593·71-s − 0.234·73-s − 0.455·77-s + 1.57·79-s + 1.31·83-s + 1.58·89-s + 0.104·91-s + 1.21·97-s + 0.597·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6048\)    =    \(2^{5} \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{6048} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 6048,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $1.623450144$
$L(\frac12)$  $\approx$  $1.623450144$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - T + p T^{2} \)
17 \( 1 + 5 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 - T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 + 3 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 11 T + p T^{2} \)
71 \( 1 - 5 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 14 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 15 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.014024272160445569125341691697, −7.56925164639793955738726327455, −6.49158587759524874508499456433, −6.11389038297671043081241088153, −4.97045257499060040224701679220, −4.66451666689748678252232989883, −3.64719695497034750400463779919, −2.64297116556229739712532891812, −2.00812423463094579156301367237, −0.65023209738077206256465214358, 0.65023209738077206256465214358, 2.00812423463094579156301367237, 2.64297116556229739712532891812, 3.64719695497034750400463779919, 4.66451666689748678252232989883, 4.97045257499060040224701679220, 6.11389038297671043081241088153, 6.49158587759524874508499456433, 7.56925164639793955738726327455, 8.014024272160445569125341691697

Graph of the $Z$-function along the critical line