Properties

Degree 2
Conductor $ 2^{5} \cdot 3^{3} \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 4.38·5-s + 7-s + 3.59·11-s + 0.797·13-s + 0.295·17-s + 0.704·19-s − 7.86·23-s + 14.2·25-s + 4.50·29-s − 1.50·31-s + 4.38·35-s − 0.202·37-s − 8.66·41-s − 2.79·43-s + 8.27·47-s + 49-s + 4·53-s + 15.7·55-s + 8.27·59-s + 11.9·61-s + 3.49·65-s + 13.3·67-s − 6.79·71-s + 6.20·73-s + 3.59·77-s − 14.7·79-s − 14.6·83-s + ⋯
L(s)  = 1  + 1.96·5-s + 0.377·7-s + 1.08·11-s + 0.221·13-s + 0.0717·17-s + 0.161·19-s − 1.63·23-s + 2.85·25-s + 0.835·29-s − 0.269·31-s + 0.741·35-s − 0.0333·37-s − 1.35·41-s − 0.426·43-s + 1.20·47-s + 0.142·49-s + 0.549·53-s + 2.12·55-s + 1.07·59-s + 1.53·61-s + 0.433·65-s + 1.63·67-s − 0.806·71-s + 0.726·73-s + 0.409·77-s − 1.65·79-s − 1.60·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6048\)    =    \(2^{5} \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{6048} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 6048,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $3.600337251$
$L(\frac12)$  $\approx$  $3.600337251$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( 1 - 4.38T + 5T^{2} \)
11 \( 1 - 3.59T + 11T^{2} \)
13 \( 1 - 0.797T + 13T^{2} \)
17 \( 1 - 0.295T + 17T^{2} \)
19 \( 1 - 0.704T + 19T^{2} \)
23 \( 1 + 7.86T + 23T^{2} \)
29 \( 1 - 4.50T + 29T^{2} \)
31 \( 1 + 1.50T + 31T^{2} \)
37 \( 1 + 0.202T + 37T^{2} \)
41 \( 1 + 8.66T + 41T^{2} \)
43 \( 1 + 2.79T + 43T^{2} \)
47 \( 1 - 8.27T + 47T^{2} \)
53 \( 1 - 4T + 53T^{2} \)
59 \( 1 - 8.27T + 59T^{2} \)
61 \( 1 - 11.9T + 61T^{2} \)
67 \( 1 - 13.3T + 67T^{2} \)
71 \( 1 + 6.79T + 71T^{2} \)
73 \( 1 - 6.20T + 73T^{2} \)
79 \( 1 + 14.7T + 79T^{2} \)
83 \( 1 + 14.6T + 83T^{2} \)
89 \( 1 + 4.66T + 89T^{2} \)
97 \( 1 + 8.54T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.443339120655686642375393211371, −7.06348938385664215608601198866, −6.64271143076307302220900639567, −5.81986758480460425902272920511, −5.48178597320630091026664627929, −4.51654049056151428209862534762, −3.65079969531765684506036754988, −2.51391362325707273568264638449, −1.84225893624531802443640641417, −1.09260688759613037508718274949, 1.09260688759613037508718274949, 1.84225893624531802443640641417, 2.51391362325707273568264638449, 3.65079969531765684506036754988, 4.51654049056151428209862534762, 5.48178597320630091026664627929, 5.81986758480460425902272920511, 6.64271143076307302220900639567, 7.06348938385664215608601198866, 8.443339120655686642375393211371

Graph of the $Z$-function along the critical line