Properties

Degree 2
Conductor $ 2^{5} \cdot 3^{3} \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 1.96·5-s + 7-s + 3.38·11-s + 6.48·13-s − 5.06·17-s − 4.13·19-s + 7.09·23-s − 1.13·25-s + 6.48·29-s + 6.34·31-s + 1.96·35-s − 6.65·37-s − 8.44·41-s + 5.65·43-s + 3.71·47-s + 49-s + 1.17·53-s + 6.65·55-s + 10.5·59-s + 10.1·61-s + 12.7·65-s + 0.216·67-s − 8.16·71-s − 12.3·73-s + 3.38·77-s − 11.3·79-s − 2.48·83-s + ⋯
L(s)  = 1  + 0.879·5-s + 0.377·7-s + 1.01·11-s + 1.79·13-s − 1.22·17-s − 0.948·19-s + 1.48·23-s − 0.226·25-s + 1.20·29-s + 1.14·31-s + 0.332·35-s − 1.09·37-s − 1.31·41-s + 0.861·43-s + 0.542·47-s + 0.142·49-s + 0.160·53-s + 0.896·55-s + 1.37·59-s + 1.29·61-s + 1.58·65-s + 0.0263·67-s − 0.968·71-s − 1.44·73-s + 0.385·77-s − 1.27·79-s − 0.272·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6048\)    =    \(2^{5} \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{6048} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 6048,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $3.044967844$
$L(\frac12)$  $\approx$  $3.044967844$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( 1 - 1.96T + 5T^{2} \)
11 \( 1 - 3.38T + 11T^{2} \)
13 \( 1 - 6.48T + 13T^{2} \)
17 \( 1 + 5.06T + 17T^{2} \)
19 \( 1 + 4.13T + 19T^{2} \)
23 \( 1 - 7.09T + 23T^{2} \)
29 \( 1 - 6.48T + 29T^{2} \)
31 \( 1 - 6.34T + 31T^{2} \)
37 \( 1 + 6.65T + 37T^{2} \)
41 \( 1 + 8.44T + 41T^{2} \)
43 \( 1 - 5.65T + 43T^{2} \)
47 \( 1 - 3.71T + 47T^{2} \)
53 \( 1 - 1.17T + 53T^{2} \)
59 \( 1 - 10.5T + 59T^{2} \)
61 \( 1 - 10.1T + 61T^{2} \)
67 \( 1 - 0.216T + 67T^{2} \)
71 \( 1 + 8.16T + 71T^{2} \)
73 \( 1 + 12.3T + 73T^{2} \)
79 \( 1 + 11.3T + 79T^{2} \)
83 \( 1 + 2.48T + 83T^{2} \)
89 \( 1 - 12.5T + 89T^{2} \)
97 \( 1 - 7.86T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.530007079082131404648450176765, −7.14263436286974143914750888440, −6.47956933308408396136557321030, −6.18179212234634187071940845185, −5.23103120337123615718147644087, −4.39972410432937761696398045499, −3.74497515801079337717578736923, −2.67809700903421821754029440984, −1.74481064213271235360648328564, −1.00133583965082406942852965322, 1.00133583965082406942852965322, 1.74481064213271235360648328564, 2.67809700903421821754029440984, 3.74497515801079337717578736923, 4.39972410432937761696398045499, 5.23103120337123615718147644087, 6.18179212234634187071940845185, 6.47956933308408396136557321030, 7.14263436286974143914750888440, 8.530007079082131404648450176765

Graph of the $Z$-function along the critical line