Properties

Degree 2
Conductor $ 2^{5} \cdot 3^{3} \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2.56·5-s − 7-s + 5.12·11-s − 2.43·13-s + 4.12·17-s + 3.12·19-s + 8.68·23-s + 1.56·25-s + 9.56·29-s + 1.56·31-s − 2.56·35-s − 0.561·37-s − 7.43·41-s − 7.24·43-s + 0.561·47-s + 49-s − 6.68·53-s + 13.1·55-s − 8.12·59-s − 8.24·61-s − 6.24·65-s + 3.31·67-s + 1.56·71-s − 7.12·73-s − 5.12·77-s + 8.56·79-s + 2.56·83-s + ⋯
L(s)  = 1  + 1.14·5-s − 0.377·7-s + 1.54·11-s − 0.676·13-s + 0.999·17-s + 0.716·19-s + 1.81·23-s + 0.312·25-s + 1.77·29-s + 0.280·31-s − 0.432·35-s − 0.0923·37-s − 1.16·41-s − 1.10·43-s + 0.0819·47-s + 0.142·49-s − 0.918·53-s + 1.76·55-s − 1.05·59-s − 1.05·61-s − 0.774·65-s + 0.405·67-s + 0.185·71-s − 0.833·73-s − 0.583·77-s + 0.963·79-s + 0.281·83-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6048\)    =    \(2^{5} \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{6048} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 6048,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $2.982885032$
$L(\frac12)$  $\approx$  $2.982885032$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{2,\;3,\;7\}$, \[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 - 2.56T + 5T^{2} \)
11 \( 1 - 5.12T + 11T^{2} \)
13 \( 1 + 2.43T + 13T^{2} \)
17 \( 1 - 4.12T + 17T^{2} \)
19 \( 1 - 3.12T + 19T^{2} \)
23 \( 1 - 8.68T + 23T^{2} \)
29 \( 1 - 9.56T + 29T^{2} \)
31 \( 1 - 1.56T + 31T^{2} \)
37 \( 1 + 0.561T + 37T^{2} \)
41 \( 1 + 7.43T + 41T^{2} \)
43 \( 1 + 7.24T + 43T^{2} \)
47 \( 1 - 0.561T + 47T^{2} \)
53 \( 1 + 6.68T + 53T^{2} \)
59 \( 1 + 8.12T + 59T^{2} \)
61 \( 1 + 8.24T + 61T^{2} \)
67 \( 1 - 3.31T + 67T^{2} \)
71 \( 1 - 1.56T + 71T^{2} \)
73 \( 1 + 7.12T + 73T^{2} \)
79 \( 1 - 8.56T + 79T^{2} \)
83 \( 1 - 2.56T + 83T^{2} \)
89 \( 1 + 1.31T + 89T^{2} \)
97 \( 1 + 1.75T + 97T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.116449456765153032038800563412, −7.15250902348865712865562849079, −6.60745435867943226993054356340, −6.07471152038805856006886508985, −5.16660773076303965196930016671, −4.65241313871062041872323115592, −3.39174930978679927647151231476, −2.91645301135024965335950802141, −1.69378607093471906529247316726, −0.995088022773706210693827393999, 0.995088022773706210693827393999, 1.69378607093471906529247316726, 2.91645301135024965335950802141, 3.39174930978679927647151231476, 4.65241313871062041872323115592, 5.16660773076303965196930016671, 6.07471152038805856006886508985, 6.60745435867943226993054356340, 7.15250902348865712865562849079, 8.116449456765153032038800563412

Graph of the $Z$-function along the critical line