Properties

Degree 2
Conductor $ 2^{5} \cdot 3^{3} \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 1.56·5-s − 7-s + 3.12·11-s − 6.56·13-s + 4.12·17-s − 5.12·19-s + 3.68·23-s − 2.56·25-s − 5.43·29-s − 2.56·31-s − 1.56·35-s + 3.56·37-s + 11.5·41-s + 9.24·43-s + 3.56·47-s + 49-s − 5.68·53-s + 4.87·55-s − 0.123·59-s + 8.24·61-s − 10.2·65-s + 15.6·67-s + 2.56·71-s + 1.12·73-s − 3.12·77-s + 4.43·79-s + 1.56·83-s + ⋯
L(s)  = 1  + 0.698·5-s − 0.377·7-s + 0.941·11-s − 1.81·13-s + 0.999·17-s − 1.17·19-s + 0.768·23-s − 0.512·25-s − 1.00·29-s − 0.460·31-s − 0.263·35-s + 0.585·37-s + 1.80·41-s + 1.41·43-s + 0.519·47-s + 0.142·49-s − 0.780·53-s + 0.657·55-s − 0.0160·59-s + 1.05·61-s − 1.27·65-s + 1.91·67-s + 0.304·71-s + 0.131·73-s − 0.355·77-s + 0.499·79-s + 0.171·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6048\)    =    \(2^{5} \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{6048} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 6048,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $2.004387751$
$L(\frac12)$  $\approx$  $2.004387751$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 - 1.56T + 5T^{2} \)
11 \( 1 - 3.12T + 11T^{2} \)
13 \( 1 + 6.56T + 13T^{2} \)
17 \( 1 - 4.12T + 17T^{2} \)
19 \( 1 + 5.12T + 19T^{2} \)
23 \( 1 - 3.68T + 23T^{2} \)
29 \( 1 + 5.43T + 29T^{2} \)
31 \( 1 + 2.56T + 31T^{2} \)
37 \( 1 - 3.56T + 37T^{2} \)
41 \( 1 - 11.5T + 41T^{2} \)
43 \( 1 - 9.24T + 43T^{2} \)
47 \( 1 - 3.56T + 47T^{2} \)
53 \( 1 + 5.68T + 53T^{2} \)
59 \( 1 + 0.123T + 59T^{2} \)
61 \( 1 - 8.24T + 61T^{2} \)
67 \( 1 - 15.6T + 67T^{2} \)
71 \( 1 - 2.56T + 71T^{2} \)
73 \( 1 - 1.12T + 73T^{2} \)
79 \( 1 - 4.43T + 79T^{2} \)
83 \( 1 - 1.56T + 83T^{2} \)
89 \( 1 - 13.6T + 89T^{2} \)
97 \( 1 + 18.2T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.916669682038485452999919383990, −7.35731737374307392680934085595, −6.65615842888914942777385259138, −5.90696600848389448470208892091, −5.33955071262762173479667093593, −4.40959905581497497346525601712, −3.69796677542623819442803854022, −2.59240933256975766055862919917, −2.01345721163684455333710930222, −0.73171722586183047666768406952, 0.73171722586183047666768406952, 2.01345721163684455333710930222, 2.59240933256975766055862919917, 3.69796677542623819442803854022, 4.40959905581497497346525601712, 5.33955071262762173479667093593, 5.90696600848389448470208892091, 6.65615842888914942777385259138, 7.35731737374307392680934085595, 7.916669682038485452999919383990

Graph of the $Z$-function along the critical line