Properties

Degree 2
Conductor $ 2^{5} \cdot 3^{3} \cdot 7 $
Sign $-1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 1

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 7-s − 2·11-s − 4·13-s + 5·17-s + 4·23-s + 4·25-s + 4·29-s + 8·31-s + 3·35-s + 37-s + 7·41-s − 5·43-s − 47-s + 49-s + 2·53-s + 6·55-s + 11·59-s − 14·61-s + 12·65-s + 4·67-s − 12·71-s + 2·77-s − 13·79-s − 11·83-s − 15·85-s + 6·89-s + ⋯
L(s)  = 1  − 1.34·5-s − 0.377·7-s − 0.603·11-s − 1.10·13-s + 1.21·17-s + 0.834·23-s + 4/5·25-s + 0.742·29-s + 1.43·31-s + 0.507·35-s + 0.164·37-s + 1.09·41-s − 0.762·43-s − 0.145·47-s + 1/7·49-s + 0.274·53-s + 0.809·55-s + 1.43·59-s − 1.79·61-s + 1.48·65-s + 0.488·67-s − 1.42·71-s + 0.227·77-s − 1.46·79-s − 1.20·83-s − 1.62·85-s + 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6048 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(6048\)    =    \(2^{5} \cdot 3^{3} \cdot 7\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(1\)
character  :  $\chi_{6048} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  1
Selberg data  =  $(2,\ 6048,\ (\ :1/2),\ -1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \)
11 \( 1 + 2 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 5 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - T + p T^{2} \)
41 \( 1 - 7 T + p T^{2} \)
43 \( 1 + 5 T + p T^{2} \)
47 \( 1 + T + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 - 11 T + p T^{2} \)
61 \( 1 + 14 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + p T^{2} \)
79 \( 1 + 13 T + p T^{2} \)
83 \( 1 + 11 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−7.65657769928688365304753972703, −7.25397291424937042517392669427, −6.41456568925980098296449714335, −5.45574813709806874328256013639, −4.74539524833964419774676384523, −4.09541803336478800287702544014, −3.10391740876158810694687813712, −2.67418383327204401633220378167, −1.06644111108047369711507869826, 0, 1.06644111108047369711507869826, 2.67418383327204401633220378167, 3.10391740876158810694687813712, 4.09541803336478800287702544014, 4.74539524833964419774676384523, 5.45574813709806874328256013639, 6.41456568925980098296449714335, 7.25397291424937042517392669427, 7.65657769928688365304753972703

Graph of the $Z$-function along the critical line