Properties

Degree $2$
Conductor $6012$
Sign $1$
Motivic weight $1$
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 0.539·5-s + 1.07·7-s + 3.70·11-s + 4.34·13-s − 1.46·17-s + 3.41·19-s + 8.68·23-s − 4.70·25-s + 2.15·29-s − 1.26·31-s + 0.581·35-s + 11.7·37-s + 9.95·41-s − 9.80·43-s − 7.70·47-s − 5.83·49-s − 9.55·53-s + 2·55-s + 6.92·59-s + 1.70·61-s + 2.34·65-s − 0.879·67-s + 4·71-s + 1.41·73-s + 4·77-s − 15.8·79-s − 0.183·83-s + ⋯
L(s)  = 1  + 0.241·5-s + 0.407·7-s + 1.11·11-s + 1.20·13-s − 0.354·17-s + 0.784·19-s + 1.80·23-s − 0.941·25-s + 0.400·29-s − 0.226·31-s + 0.0982·35-s + 1.93·37-s + 1.55·41-s − 1.49·43-s − 1.12·47-s − 0.833·49-s − 1.31·53-s + 0.269·55-s + 0.901·59-s + 0.218·61-s + 0.290·65-s − 0.107·67-s + 0.474·71-s + 0.166·73-s + 0.455·77-s − 1.78·79-s − 0.0201·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6012 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6012 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6012\)    =    \(2^{2} \cdot 3^{2} \cdot 167\)
Sign: $1$
Motivic weight: \(1\)
Character: $\chi_{6012} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6012,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.805244421\)
\(L(\frac12)\) \(\approx\) \(2.805244421\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
167 \( 1 + T \)
good5 \( 1 - 0.539T + 5T^{2} \)
7 \( 1 - 1.07T + 7T^{2} \)
11 \( 1 - 3.70T + 11T^{2} \)
13 \( 1 - 4.34T + 13T^{2} \)
17 \( 1 + 1.46T + 17T^{2} \)
19 \( 1 - 3.41T + 19T^{2} \)
23 \( 1 - 8.68T + 23T^{2} \)
29 \( 1 - 2.15T + 29T^{2} \)
31 \( 1 + 1.26T + 31T^{2} \)
37 \( 1 - 11.7T + 37T^{2} \)
41 \( 1 - 9.95T + 41T^{2} \)
43 \( 1 + 9.80T + 43T^{2} \)
47 \( 1 + 7.70T + 47T^{2} \)
53 \( 1 + 9.55T + 53T^{2} \)
59 \( 1 - 6.92T + 59T^{2} \)
61 \( 1 - 1.70T + 61T^{2} \)
67 \( 1 + 0.879T + 67T^{2} \)
71 \( 1 - 4T + 71T^{2} \)
73 \( 1 - 1.41T + 73T^{2} \)
79 \( 1 + 15.8T + 79T^{2} \)
83 \( 1 + 0.183T + 83T^{2} \)
89 \( 1 - 6.15T + 89T^{2} \)
97 \( 1 - 9.23T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.133780502738191379539204405091, −7.37571892289049988287480250071, −6.51973096034321351711711539630, −6.11124884586916891395447254143, −5.18138049440735798960384844549, −4.44426471252399524938296933808, −3.64511714781206125420280175629, −2.86636030428331692893615148275, −1.64181112840925146420453473338, −0.981666365539030035682791486911, 0.981666365539030035682791486911, 1.64181112840925146420453473338, 2.86636030428331692893615148275, 3.64511714781206125420280175629, 4.44426471252399524938296933808, 5.18138049440735798960384844549, 6.11124884586916891395447254143, 6.51973096034321351711711539630, 7.37571892289049988287480250071, 8.133780502738191379539204405091

Graph of the $Z$-function along the critical line