Properties

Label 8-600e4-1.1-c1e4-0-3
Degree $8$
Conductor $129600000000$
Sign $1$
Analytic cond. $526.882$
Root an. cond. $2.18884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 12·7-s + 8·9-s − 48·21-s + 12·27-s − 8·31-s + 8·37-s + 8·43-s + 72·49-s − 24·61-s − 96·63-s − 16·67-s − 12·73-s + 23·81-s − 32·93-s + 52·97-s + 44·103-s + 32·111-s + 40·121-s + 127-s + 32·129-s + 131-s + 137-s + 139-s + 288·147-s + 149-s + 151-s + ⋯
L(s)  = 1  + 2.30·3-s − 4.53·7-s + 8/3·9-s − 10.4·21-s + 2.30·27-s − 1.43·31-s + 1.31·37-s + 1.21·43-s + 72/7·49-s − 3.07·61-s − 12.0·63-s − 1.95·67-s − 1.40·73-s + 23/9·81-s − 3.31·93-s + 5.27·97-s + 4.33·103-s + 3.03·111-s + 3.63·121-s + 0.0887·127-s + 2.81·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 23.7·147-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{4} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(526.882\)
Root analytic conductor: \(2.18884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{4} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.700023238\)
\(L(\frac12)\) \(\approx\) \(1.700023238\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
5 \( 1 \)
good7$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
17$C_2^2$$\times$$C_2^2$ \( ( 1 - 8 T + 32 T^{2} - 8 p T^{3} + p^{2} T^{4} )( 1 + 8 T + 32 T^{2} + 8 p T^{3} + p^{2} T^{4} ) \)
19$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 - 158 T^{4} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 56 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 4 T + 8 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^3$ \( 1 - 3518 T^{4} + p^{4} T^{8} \)
53$C_2^3$ \( 1 - 4174 T^{4} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 116 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 8 T + 32 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 134 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 8722 T^{4} + p^{4} T^{8} \)
89$C_2^2$ \( ( 1 + 170 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 18 T + p T^{2} )^{2}( 1 - 8 T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60689976931494954792452632750, −7.39594522252576426712038542949, −7.34290803399957647415589062383, −7.21819065090895601978676571231, −6.75359766451144826774473286639, −6.31798232045585439324785017930, −6.26721286446570257336003727360, −6.18200349647624083788691126250, −6.04126992521340055942578711387, −5.70209234447232390769790061784, −5.37721151937370020053293826708, −4.69358348952496015804781533569, −4.52781797525554858933349514616, −4.44086421624489791051725399523, −3.91712875277850756595439968011, −3.50786974838379001124111800502, −3.36461889612625722427737669008, −3.35316540524734806991000923060, −3.07992668812418936133010503143, −2.88628410245204732300949769799, −2.51149917893159982814059512944, −2.06320607704949247415784799678, −1.94767599230010331403798451430, −0.964903326611418223531473243068, −0.36374035517925994833875715008, 0.36374035517925994833875715008, 0.964903326611418223531473243068, 1.94767599230010331403798451430, 2.06320607704949247415784799678, 2.51149917893159982814059512944, 2.88628410245204732300949769799, 3.07992668812418936133010503143, 3.35316540524734806991000923060, 3.36461889612625722427737669008, 3.50786974838379001124111800502, 3.91712875277850756595439968011, 4.44086421624489791051725399523, 4.52781797525554858933349514616, 4.69358348952496015804781533569, 5.37721151937370020053293826708, 5.70209234447232390769790061784, 6.04126992521340055942578711387, 6.18200349647624083788691126250, 6.26721286446570257336003727360, 6.31798232045585439324785017930, 6.75359766451144826774473286639, 7.21819065090895601978676571231, 7.34290803399957647415589062383, 7.39594522252576426712038542949, 7.60689976931494954792452632750

Graph of the $Z$-function along the critical line