Properties

 Degree 2 Conductor $2^{3} \cdot 3 \cdot 5^{2}$ Sign $-0.247 + 0.968i$ Motivic weight 1 Primitive yes Self-dual no Analytic rank 0

Related objects

Dirichlet series

 L(s)  = 1 + (−0.806 + 1.16i)2-s − i·3-s + (−0.699 − 1.87i)4-s + (1.16 + 0.806i)6-s − 0.746·7-s + (2.74 + 0.699i)8-s − 9-s − 5.36i·11-s + (−1.87 + 0.699i)12-s + 2.92i·13-s + (0.601 − 0.866i)14-s + (−3.02 + 2.62i)16-s − 2.13·17-s + (0.806 − 1.16i)18-s − 1.73i·19-s + ⋯
 L(s)  = 1 + (−0.570 + 0.821i)2-s − 0.577i·3-s + (−0.349 − 0.936i)4-s + (0.474 + 0.329i)6-s − 0.282·7-s + (0.968 + 0.247i)8-s − 0.333·9-s − 1.61i·11-s + (−0.540 + 0.201i)12-s + 0.811i·13-s + (0.160 − 0.231i)14-s + (−0.755 + 0.655i)16-s − 0.517·17-s + (0.190 − 0.273i)18-s − 0.397i·19-s + ⋯

Functional equation

\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.247 + 0.968i)\, \overline{\Lambda}(2-s) \end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut & 600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.247 + 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

 $$d$$ = $$2$$ $$N$$ = $$600$$    =    $$2^{3} \cdot 3 \cdot 5^{2}$$ $$\varepsilon$$ = $-0.247 + 0.968i$ motivic weight = $$1$$ character : $\chi_{600} (301, \cdot )$ primitive : yes self-dual : no analytic rank = $$0$$ Selberg data = $$(2,\ 600,\ (\ :1/2),\ -0.247 + 0.968i)$$ $$L(1)$$ $$\approx$$ $$0.342859 - 0.441297i$$ $$L(\frac12)$$ $$\approx$$ $$0.342859 - 0.441297i$$ $$L(\frac{3}{2})$$ not available $$L(1)$$ not available

Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$where, for $p \notin \{2,\;3,\;5\}$,$$F_p(T)$$ is a polynomial of degree 2. If $p \in \{2,\;3,\;5\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 $$1 + (0.806 - 1.16i)T$$
3 $$1 + iT$$
5 $$1$$
good7 $$1 + 0.746T + 7T^{2}$$
11 $$1 + 5.36iT - 11T^{2}$$
13 $$1 - 2.92iT - 13T^{2}$$
17 $$1 + 2.13T + 17T^{2}$$
19 $$1 + 1.73iT - 19T^{2}$$
23 $$1 + 7.49T + 23T^{2}$$
29 $$1 + 6.74iT - 29T^{2}$$
31 $$1 - 2.64T + 31T^{2}$$
37 $$1 + 1.07iT - 37T^{2}$$
41 $$1 + 11.2T + 41T^{2}$$
43 $$1 + 7.44iT - 43T^{2}$$
47 $$1 + 1.73T + 47T^{2}$$
53 $$1 + 7.72iT - 53T^{2}$$
59 $$1 + 6.85iT - 59T^{2}$$
61 $$1 - 6.45iT - 61T^{2}$$
67 $$1 + 7.44iT - 67T^{2}$$
71 $$1 - 13.2T + 71T^{2}$$
73 $$1 - 0.690T + 73T^{2}$$
79 $$1 - 2.64T + 79T^{2}$$
83 $$1 - 5.85iT - 83T^{2}$$
89 $$1 - 7.59T + 89T^{2}$$
97 $$1 - 14.1T + 97T^{2}$$
show less
\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}

Imaginary part of the first few zeros on the critical line

−10.24913880386126223497420284432, −9.316793443123483233770848648248, −8.457819602683363182750781745326, −7.915092357693926310956011629056, −6.61940670336845572818184136441, −6.27914015174090946836960195394, −5.17890563335920392732985750429, −3.77950276141966691808917156716, −2.05918041610614081917854046339, −0.36412827931720773684822848800, 1.83098214645737332572255802108, 3.09348413190969811732507335812, 4.18085000834518565530146837729, 5.05602147133902731873060567504, 6.56886070397162498410462174341, 7.66007679753556324749607342123, 8.448739400445218208854029071417, 9.514631783576072444313604290402, 10.04863750691141834805443638203, 10.62675341297917817811957433306