Properties

Label 2-60-12.11-c5-0-26
Degree $2$
Conductor $60$
Sign $0.863 + 0.505i$
Analytic cond. $9.62302$
Root an. cond. $3.10210$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.26 + 5.51i)2-s + (−1.23 + 15.5i)3-s + (−28.8 − 13.9i)4-s − 25i·5-s + (−84.1 − 26.4i)6-s − 173. i·7-s + (113. − 141. i)8-s + (−239. − 38.4i)9-s + (137. + 31.5i)10-s + 400.·11-s + (251. − 430. i)12-s − 895.·13-s + (956. + 219. i)14-s + (388. + 30.9i)15-s + (636. + 802. i)16-s − 138. i·17-s + ⋯
L(s)  = 1  + (−0.223 + 0.974i)2-s + (−0.0793 + 0.996i)3-s + (−0.900 − 0.434i)4-s − 0.447i·5-s + (−0.954 − 0.299i)6-s − 1.33i·7-s + (0.624 − 0.780i)8-s + (−0.987 − 0.158i)9-s + (0.435 + 0.0997i)10-s + 0.997·11-s + (0.505 − 0.863i)12-s − 1.47·13-s + (1.30 + 0.298i)14-s + (0.445 + 0.0354i)15-s + (0.621 + 0.783i)16-s − 0.116i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.863 + 0.505i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 60 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (0.863 + 0.505i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(60\)    =    \(2^{2} \cdot 3 \cdot 5\)
Sign: $0.863 + 0.505i$
Analytic conductor: \(9.62302\)
Root analytic conductor: \(3.10210\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{60} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 60,\ (\ :5/2),\ 0.863 + 0.505i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.761540 - 0.206439i\)
\(L(\frac12)\) \(\approx\) \(0.761540 - 0.206439i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.26 - 5.51i)T \)
3 \( 1 + (1.23 - 15.5i)T \)
5 \( 1 + 25iT \)
good7 \( 1 + 173. iT - 1.68e4T^{2} \)
11 \( 1 - 400.T + 1.61e5T^{2} \)
13 \( 1 + 895.T + 3.71e5T^{2} \)
17 \( 1 + 138. iT - 1.41e6T^{2} \)
19 \( 1 + 852. iT - 2.47e6T^{2} \)
23 \( 1 - 924.T + 6.43e6T^{2} \)
29 \( 1 + 8.07e3iT - 2.05e7T^{2} \)
31 \( 1 + 4.29e3iT - 2.86e7T^{2} \)
37 \( 1 + 3.44e3T + 6.93e7T^{2} \)
41 \( 1 - 1.37e4iT - 1.15e8T^{2} \)
43 \( 1 + 5.13e3iT - 1.47e8T^{2} \)
47 \( 1 + 2.84e4T + 2.29e8T^{2} \)
53 \( 1 + 2.78e4iT - 4.18e8T^{2} \)
59 \( 1 - 1.96e4T + 7.14e8T^{2} \)
61 \( 1 + 1.86e4T + 8.44e8T^{2} \)
67 \( 1 - 2.47e4iT - 1.35e9T^{2} \)
71 \( 1 - 5.44e4T + 1.80e9T^{2} \)
73 \( 1 - 3.49e4T + 2.07e9T^{2} \)
79 \( 1 + 5.31e4iT - 3.07e9T^{2} \)
83 \( 1 + 5.36e4T + 3.93e9T^{2} \)
89 \( 1 + 3.26e4iT - 5.58e9T^{2} \)
97 \( 1 + 1.21e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.34303593790059831201283496881, −13.28374986050691155893611903159, −11.53698691637691481193060148884, −10.02950967947646078491396208484, −9.434813507699526082923954283951, −7.970428289042781856122112975066, −6.64552909586853152272626707114, −4.95762679856584008565102853712, −4.04418287748477879183782994292, −0.41435745000196016522446086599, 1.74028348486789892613827475411, 2.99917923351797370347322637318, 5.31028223085859088702307841876, 6.97421879608954571362092270793, 8.452209518182455925349804493994, 9.469685610928976941430830599220, 11.03108107344381842908246619822, 12.26883229484004337242890457291, 12.38810871563650259162805672818, 14.08985178280097754464051535152

Graph of the $Z$-function along the critical line