Properties

Label 8-60e4-1.1-c1e4-0-2
Degree $8$
Conductor $12960000$
Sign $1$
Analytic cond. $0.0526882$
Root an. cond. $0.692172$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 4·7-s + 2·9-s − 12·13-s − 8·21-s + 10·25-s + 6·27-s + 16·31-s − 12·37-s − 24·39-s − 12·43-s + 8·49-s − 24·61-s − 8·63-s − 4·67-s + 4·73-s + 20·75-s + 11·81-s + 48·91-s + 32·93-s + 36·97-s + 4·103-s − 24·111-s − 24·117-s + 4·121-s + 127-s − 24·129-s + ⋯
L(s)  = 1  + 1.15·3-s − 1.51·7-s + 2/3·9-s − 3.32·13-s − 1.74·21-s + 2·25-s + 1.15·27-s + 2.87·31-s − 1.97·37-s − 3.84·39-s − 1.82·43-s + 8/7·49-s − 3.07·61-s − 1.00·63-s − 0.488·67-s + 0.468·73-s + 2.30·75-s + 11/9·81-s + 5.03·91-s + 3.31·93-s + 3.65·97-s + 0.394·103-s − 2.27·111-s − 2.21·117-s + 4/11·121-s + 0.0887·127-s − 2.11·129-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 12960000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(12960000\)    =    \(2^{8} \cdot 3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(0.0526882\)
Root analytic conductor: \(0.692172\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 12960000,\ (\ :1/2, 1/2, 1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6768946904\)
\(L(\frac12)\) \(\approx\) \(0.6768946904\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2^2$ \( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
5$C_2$ \( ( 1 - p T^{2} )^{2} \)
good7$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
17$C_2^3$ \( 1 - 2 T^{4} + p^{4} T^{8} \)
19$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^3$ \( 1 + 238 T^{4} + p^{4} T^{8} \)
29$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 2 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 6 T + 18 T^{2} + 6 p T^{3} + p^{2} T^{4} )^{2} \)
47$C_2^2$$\times$$C_2^2$ \( ( 1 - 14 T + 98 T^{2} - 14 p T^{3} + p^{2} T^{4} )( 1 + 14 T + 98 T^{2} + 14 p T^{3} + p^{2} T^{4} ) \)
53$C_2^3$ \( 1 + 3598 T^{4} + p^{4} T^{8} \)
59$C_2^2$ \( ( 1 + 38 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
67$C_2^2$ \( ( 1 + 2 T + 2 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 2 T + 2 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 122 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$$\times$$C_2^2$ \( ( 1 - 22 T + 242 T^{2} - 22 p T^{3} + p^{2} T^{4} )( 1 + 22 T + 242 T^{2} + 22 p T^{3} + p^{2} T^{4} ) \)
89$C_2^2$ \( ( 1 + 158 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 18 T + 162 T^{2} - 18 p T^{3} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.68717685213666173867539920033, −10.53741246784563827321850000183, −10.39772960952919280695046285176, −10.31517972439760862111967515152, −10.30783413356490826296638639362, −9.684992825696092715715463123807, −9.299186274524804035335087601220, −9.122024583398483955409754999430, −9.091176975443855831070908195766, −8.396741378868973744267835407080, −8.141539412500296434633534646016, −7.84264132045831719729779735590, −7.41727364560654563618102525190, −6.92382608257770560132859887593, −6.86445969136353655626133935062, −6.54806518347674944274692276756, −6.14693231226485150864417260201, −5.33541712393311827841809943575, −5.00569969556774291250750573922, −4.54704649572272101623991758334, −4.50603179780288941406115005502, −3.21855912675630881585355836082, −3.18642659840942046056459666008, −2.80493384870982070917755980699, −2.15777231959226116393597609132, 2.15777231959226116393597609132, 2.80493384870982070917755980699, 3.18642659840942046056459666008, 3.21855912675630881585355836082, 4.50603179780288941406115005502, 4.54704649572272101623991758334, 5.00569969556774291250750573922, 5.33541712393311827841809943575, 6.14693231226485150864417260201, 6.54806518347674944274692276756, 6.86445969136353655626133935062, 6.92382608257770560132859887593, 7.41727364560654563618102525190, 7.84264132045831719729779735590, 8.141539412500296434633534646016, 8.396741378868973744267835407080, 9.091176975443855831070908195766, 9.122024583398483955409754999430, 9.299186274524804035335087601220, 9.684992825696092715715463123807, 10.30783413356490826296638639362, 10.31517972439760862111967515152, 10.39772960952919280695046285176, 10.53741246784563827321850000183, 11.68717685213666173867539920033

Graph of the $Z$-function along the critical line